Report to the Fifteenth Session of the IOC Group of Experts On the Global Sea Level Observing System (GLOSS)

Chilean Sea Level Network: Current State

Juan J. Fierro

Hydrographic and Oceanographic Service of the Chilean Navy (SHOA) oceanografia@shoa.cl

Introduction

Since 1941, the Chilean Navy Hydrographic and Oceanographic Service (SHOA) has established a sea level network that currently comprises 42 sea level recorders covering a long coast of more than 4000 kilometers in the mainland, as well as in some islands and the Antarctic Continent (see fig.1). Most of the sea level stations (40) transmit their data in real time using available satellite systems. Only two stations still operate in delayed time, requiring the download of the information during maintenance periods.

In 2010 the original network considered 16 stations transmitting data through GOES satellite system with an average distance between them of approximately 300 kilometers. Currently the average distance between the 42 stations is roughly 110 kilometers.

Up to date, all the sea level stations operate with a primary and a secondary sea level sensor (mainly a hydrostatic pressure sensor and a radar sensor), as well as redundant transmission system for the collected data.

Regarding telemetry systems, GOES remains the main data transmission system and text messages through cell phone GPRS network, is used as a secondary telemetry system. It should be noted that sea level stations of Bucalemu (Lat: 34° 38' 22" S; Long: 072° 02' 46"W), Caleta Meteoro (Lat: 52° 58' 00"S; Long: 74° 03' 58"W), San Felix Island (Lat: 26° 17' 32"S; Long: 80° 06' 31"W) and Puerto Soberanía (Lat: 62° 28' 00"S; Long: 59° 39' 00"W), are the only stations that have double satellite telemetry systems, GOES and INMARSAT-BGAN, due to the absence in these sectors of GPRS network.

The sampling interval of sea level data is set to 1 minute. The data transmission frequency mostly ranges from 1 to 5 minutes. Usually data is transmitted every 5 minutes via the GOES satellite system and GPRS, while transmission is every 1 minute in those stations that have Inmarsat BGAN antennas.

Currently, San Pedro, (Lat: 47° 43'S; Long: 74° 54'W) and Rada Covadonga, (Lat: 63° 19'S; Long: 57° 55'W), are the only sea level stations operating with self contained digital platforms, being the data downloaded in those places during annual field campaigns.

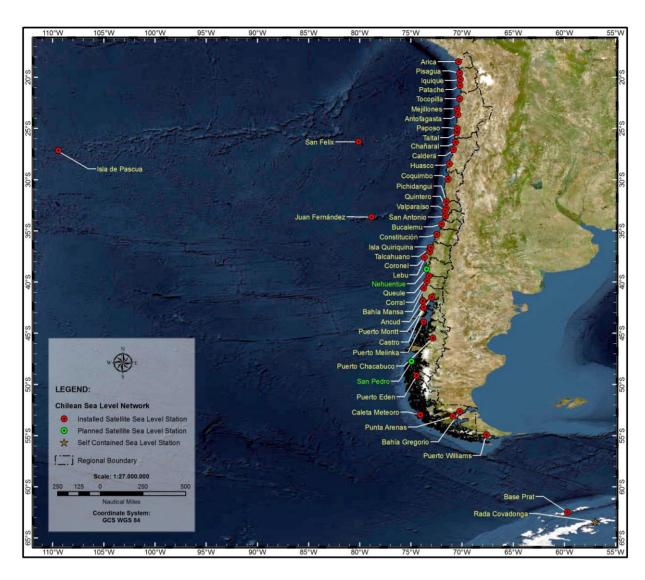


Figure 1: Chilean Sea Level Network

The present stations capabilities have allowed us to achieve a reliable network supplying data for operational and scientific purposes.

The data collected at the Chilean Sea Level Network are available through the website developed and maintained by VLIZ for UNESCO/IOC. Additionally, data can be accessed in real time at SHOA's website through the link: http://www.shoa.cl/nuestros-servicios/mareas.

Chilean Sea Level Stations with real time telemetry

The table below summarizes the geographic location and year of installation of the data collection platforms with real time sea level data transmissions.

Station Name	Latitude	Longitude	Date of installation Satellite platform	
Arica	18° 28 '33"	070° 19' 23"	1999	
Pisagua	19° 35' 48"	070° 12' 49"	2010	
Iquique	20° 12' 16"	070° 08' 52"	1999	
Patache	20° 48' 01"	070° 11' 39"	2011	
Tocopilla	22° 05' 35"	070° 12' 53"	2010	
Mejillones	23° 05' 51"	070° 27' 03"	2011	
Antofagasta	23° 39' 11"	070° 24' 16"	1999	
Paposo	25° 00' 32"	070° 28' 07"	2013	
Taltal	25° 24' 26"	070° 29' 23"	2010	
Isla San Félix	26° 17' 32"	080° 06' 31"	1999	
Isla de Pascua	27° 09' 17"	109° 28' 22"	1999	
Chañaral	26° 21' 24"	070° 38 46"	2012	
Caldera	27° 03′ 52″	070° 49' 29"	1999	
Huasco	28° 27' 39"	071° 13' 25"	2010	
Coquimbo	29° 57' 00"	071° 20' 07"	1999	
Pichidangui	32° 08' 08"	071° 31' 46"	2010	
Isla Robinson Crusoe	33° 38' 09"	078° 49' 47"	1999	
Quintero	32° 46′ 32″	071° 31' 31"	2011	
Valparaíso	33° 01' 38"	071° 37' 33"	1999	
San Antonio	33° 34' 56"	071° 37' 08"	1999	
Bucalemu	34° 38' 22"	072° 02' 46"	2014	
Constitución	35° 21' 21"	072° 27' 28"	2010	
Talcahuano	36° 41' 43"	073° 06' 23"	1999	
Isla Quiriquina	36° 38' 10"	073° 03' 25"	2013	
Coronel	37° 01' 44"	073° 09' 07"	2012	
Lebu	37° 35' 39"	073° 39' 50"	2010	
Queule	39° 23' 52"	073° 12' 54"	2013	
Corral	39° 52' 42"	073° 25' 22"	1999	
Bahía Mansa	40° 34' 51"	073° 44' 14"	2011	
Puerto Montt	41° 29' 06"	072° 57' 39"	1999	
Ancud	41° 52' 01"	073° 49' 55"	1999	
Castro	42° 28' 50"	073° 45' 30"	2011	
Melinka	43° 53' 54"	073° 44' 54"	2011	
Puerto Chacabuco	45° 28' 02"	072° 49' 13"	2001	
Puerto Edén	49° 07' 54"	074° 25' 19"	2011	
Punta Arenas	53° 07' 25"	070° 51' 37"	2001	
Bahía Gregorio	52° 38' 54"	070° 12' 29"	2014	
Caleta Meteoro	52° 58' 00"	074° 03' 58"	2011	
Puerto Williams	54° 56' 00"	067° 36' 36"	1999	
Base Prat, Antártica	62° 28' 00"	059° 39' 00"	2013	

Status of GLOSS Stations in Chile

The seven chilean stations that have been considered in the GLOSS core network are as follows :

GLOSS ID.	Location	Status
137	I. Pascua Lat: 27° 09' S Lon: 109° 27' W	 Field Unit : VAISALA MAWS110 Sea Level Sensors : - Differential Pressure Transducer
74	Antofagasta Lat: 23° 39' S Lon: 70° 24' W	Field Unit : VAISALA MAWS110 Sea Level Sensors : - Differential Pressure Transducer
175	Valparaíso Lat: 33° 02' S Lon: 71° 37' W	 Field Unit : VAISALA MAWS110 Sea Level Sensors : - Differential Pressure Transducer DRUCK PTX1830
176	I.J.Fernández Lat: 33° 37' S Lon: 78° 50' W	Field Unit : VAISALA MAWS110 Sea Level Sensors : - Differential Pressure Transducer
177	I.San Félix Lat : 26° 17' S Lon: 80° 07' W	Field Unit : VAISALA MAWS110 Sea Level Sensors : - Differential Pressure Transducer

GLOSS	Location	Status		
ID.				
178	P.Montt Lat: 41° 29' S Lon: 72° 58' W	 Field Unit : VAISALA MAWS110 Sea Level Sensors : - Differential Pressure Transducer		
189	P. Soberanía (Base Prat) Lat: 62° 29' S Lon: 59° 38' W	 Field Unit : VAISALA MAWS110 Sea Level Sensors : Differential Pressure Transducer (2)		

Data Streams

Chile contributes to GLOSS maintaining adequate data streams to GLOSS archiving Centres.

We have delivered to PSMSL the following monthly mean sea level data for some specific locations along the Chilean coast:

Location	Lat (S)	Long (W)	Record
Arica	18° 29'	70° 19'	1992 – 2015
Iquique	20° 13'	70° 10'	1984 – 2015
Caldera	27° 04'	70° 50'	1992 – 2015
Talcahuano	36° 41'	73° 06'	1992 – 2015
Corral	39° 52'	73° 26'	1984 – 2015
Ancud	41° 52'	73° 51'	1999 – 2015
Melinka	43° 54'	73° 45'	2011 – 2015
Punta Arenas	53° 10'	70° 54'	1988 – 2015
Puerto Williams	54° 56'	67° 37'	1971 – 2015

Future Plans

During the second term of 2017, SHOA has planned the installation of two new stations with real time telemetry in the southern part of the Chilean coast (stations highlighted with green dots at figure 1). The first one will be installed around location of Nehuntue, (Lat: 38° 45'S; Long: 73° 25'W), while the second one will be installed at San Pedro, (Lat: 47° 43'S; Long: 74° 54'W), strengthening the capabilities in data availability and response within the framework of the National Tsunami Warning System.