

The Norwegian Tide Gauge Network

GLOSS Experts 13th Meeting, October 2013

Tor Tørresen¹ and Svein Ola Thorsen²

tor.torresen@kartverket.no, svein.ola.thorsen@kartverket.no

Introduction

The Norwegian Tide Gauge Network is operated by the Norwegian Mapping Authority, Hydrographic Service (NHS). There are 23 digital tide gauges along the Norwegian coast and one gauge in Ny-Ålesund at Svalbard (see Figure 1 and Table 1).

¹ Norwegian Mapping Authority Hydrographic Service, P.O. Box 60, 4001 Stavanger, NORWAY

² Norwegian Mapping Authority Geodetic Institute, 3507 Hønefoss, NORWAY

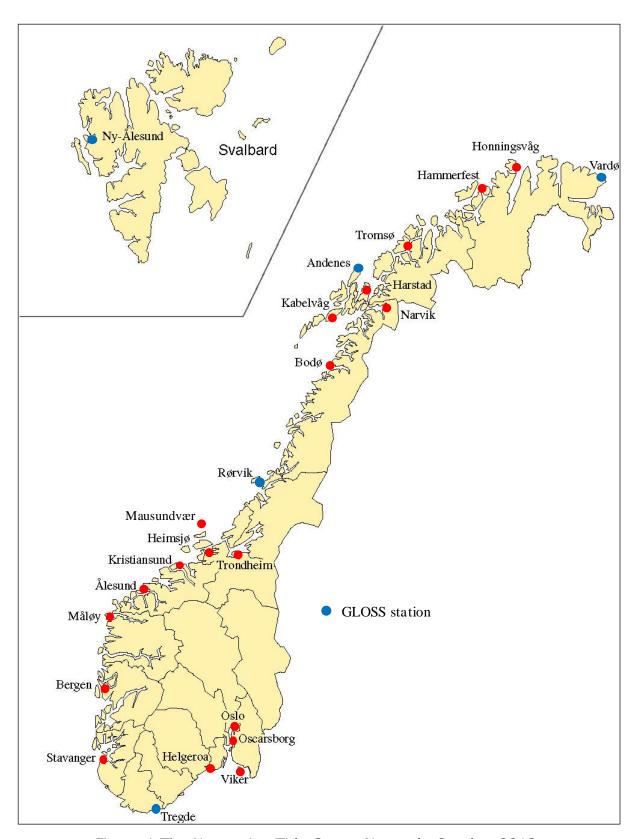


Figure 1 The Norwegian Tide Gauge Network, October 2013.

Station	Latitude	Longitude	Continuous GNSS	Digital data available from	
Viker	59°02' N	10°57' E	No	1990	
Oslo	59°54' N	10º44' E	No	1914	
Oscarsborg	59º41' N	10°37' E	No	1953	
Helgeroa	59°00' N	09º52' E	No	1965	
Tregde	58°00' N	07º34' E	Yes, since 2001	1927	
Stavanger	58º58' N	05º44' E	No	1919	
Bergen	60°24' N	05º18' E	No	1915	
Måløy	61º56' N	05°07' E	No	1943	
Ålesund	62º28' N	06°09' E	No	1961	
Kristiansund	63º07' N	07º45' E	No	1952	
Heimsjø	63º26' N	09°07' E	No	1928	
Mausundvær	63º52' N	08º40' E	Yes, since 2007	1988	
Trondheim	63º26' N	10º24' E	No	1989	
Rørvik	64º52' N	11º15' E	No	1969	
Bodø	67º17' N	14º23' E	No	1949	
Kabelvåg	68º13' N	14º30' E	No	1988	
Narvik	68º26' N	17º25' E	No	1931	
Harstad	68º48' N	16º33' E	No	1952	
Andenes	69°19' N	16º09' E	Yes, since 2000	1991	
Tromsø	69°39' N	18º58' E	No	1952	
Hammerfest	70°40' N	23º41' E	No	1957	
Honningsvåg	70°59' N	25°59' E	Yes, since 2006	1970	
Vardø	70°20' N	31º06' E	Yes, since 2005	1947	
Ny-Ålesund	78º56' N	11º57' E	Yes, since 1993	1976	

Table 1: List of stations in the Norwegian Tide Gauge Network.

The tide gauge network

Until 1985 there were two tide gauge networks in Norway, but between 1986 and 1992 the gauges were modernized and merged into one network operated by the Norwegian Mapping Authority, Hydrographic Service (NHS). The new system used stilling wells and sampled the water level with 15 second intervals. These data were filtered and decimated to 10 minute values and automatically transferred to NHS.

A new modernization was completed in 2002. The data loggers were changed to Sutron 8210 and the 10 minute values were obtained by making 3 minute averages of one second samples.

In 2007 the sampling and filtering procedures were changed. The sampling frequency is still 1 Hz but now one-minute averages are stored in the data logger, transferred to NHS at regular intervals (every half hour at the moment) and stored in a database. The one-minute values are filtered (Butterworth filter) and decimated to produce ten-minute values. The ten-minute values go through a half automatic quality control. Software developed at NHS is used for manual editing on the data. Ten-minute values are presented on the internet.

All the permanent tide gauges are of the stilling well type, except in Hammerfest where a radar gauge (Miros SM-094) is used (since August 2007).

The analogue tide gauge at Mausundvær was renewed in 2010, and is now part of the network.

The majorities of the gauges are mounted on solid rock and are levelled with about three years intervals. A few gauges are located on slightly unstable ground and are levelled more frequently. The Norwegian Mapping Authority, Geodetic Institute (GI) is responsible for the levelling.

Future work

The Norwegian Mapping Authority is working on installation of tide gauges on the remote islands Jan-Mayen and Bjørnøya (Bear Island). Rough weather, ice and lack of sheltered areas make it difficult to find a good technical solution.

GNSS measurements

By October 2013 seven continuous GNSS receivers (CGPS) are installed at six Norwegian tide gauges. In Vardø, Andenes and Tregde the antennas are installed directly at the tide gauge, on the other stations the GNSS receivers are some hundred meters away. In Ny-Ålesund the GNSS receiver is installed near the VLBI-station (Very Long Baseline Interferometry), which is located about 1.5 km from the tide gauge.

In May 2009 the GNSS receivers in Ny Ålesund (NYA1, NYAL) was renewed.

In September 2010 the GNSS receiver and antenna in Honningsvåg (HONS) was renewed.

In May 2012 the receiver in Tregde was renewed.

Station	Contin- uous GNSS from	GNSS receiver type	Serial nr.	Firmware version	Sampling rate	Antenna type	Ra- dome
Tregde TGDE	2001	Trimble NetR9	5128K 76924	4.60	1 sec.	AOAD/ M_T	None
Andenes ANDE	2000	Trimble NetR5	4649K 03383	3.84	1 sec.	Trimble Zephyr TRM5597 1.00	None
Ny-Ålesund NYA1	1997	Trimble NetR8	4843K 33429	4.03	1 sec.	ASH 701073.3	Snow
Ny-Ålesund NYAL	1993	Trimble NetRS	443923 9123	1.1-5	1 sec.	AOAD/M_ B	Dome
Vardø VARD	2005	Trimble NetRS	441223 2898	1.1-5	1 sec.	Trimble TRM 29659.00	Dome SCIS
Mausundvær FROC	2007	Trimble NetR5	4649K 03429	3.84	1 sec.	Trimble Zephyr TRM5597 1.00	None
Honningsvåg HONS	2006	Trimble NetR8	4923K 35442	4.03	1 sec.	TRM5980 0.00	Dome SCIS

Table 2: An overview of status of the continuous GNNS receivers per Oct 2013.

The Norwegian Mapping Authority, Geodetic Institute is responsible for the continuous GNSS measurements and analyses of the data.

Figure 2: Tide gauges with continuous GNSS receivers at Tregde (to the left) and at Andenes

Data availability

By the end of 2012 the Norwegian water level database contained about 1536 years with digital water level observations. All data have been through a quality control, and all corrections are flagged and documented. Figure 3 gives an overview of the available digital time series from the permanent tide gauges that are operated today.

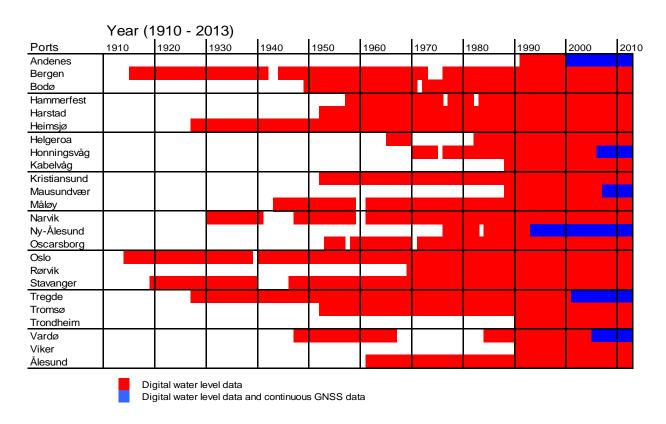


Figure 3: An overview of available digital time series from the stations in the network.

International data exchange

Quality controlled sea level data are routinely made available through the following international programmes:

• PSMSL: Monthly and annual means

• GLOSS: Fast delivery data to UHSLC

Delayed mode data to BODC

Internet

The following quality checked sea level data are available for free download on our web site www.sehavniva.no:

- Water level observations
- Tidal predictions
- Residuals
- Water level prognosis for 5 days (model-data from the Norwegian Meteorological Institute)
- Monthly and annual means
- Tidal levels/reference levels