U.S. National Report Contributions to the Global Sea Level Observing System

U.S. National Report Table of Contents

I.	Introduction4
	National Oceanic & Atmospheric Administration Office of Climate Observation4
	Sustained Ocean Observing System5
II.	Global Sea Level Observing Network Components and Operating Status
	A. Tide Station Networks
	NOAA National Ocean Service (NOS)7
	University of Hawaii Sea Level Center8
	B. Satellite Altimeter Activities
	Satellite Altimeter Operations11
	Satellite Altimeter Data Analysis and Drift Estimation
	Satellite Altimeter Calibration
	C. Geodesy and Positioning13
III.	Product Development and Delivery16
	A. Current Sea Level Research and Derived Products
	University of South Florida Satellite Altimeter Products16
	University of Hawaii Sea Level Center Research17
	NOAA Research17
	B. Data Delivery
	Database Support and Maintenance
	Web Products
IV.	New Technology
	A. GPS on Tide Gauges
	B. New Sensor Testing
	Microwave Water Levels
	C. Hardening of NOAA Stations
	D. Arctic Bottom-Mounted Pressure Sensors
	E. Deep-Ocean Assessment and Reporting of Tsunamis (DART®)
V.	Regional Activities
	A. Support of Regional Tsunami Warning Systems
	U.S. Tsunami Program
	New and Upgraded Tsunami Capable Tide Stations
	IOC Tsunami Warning Systems
	Sustainable Sea Level Observations
	Puerto Rico Seismic Network
	B. Climate Change Science Program
	C. Contributions to an Arctic Observing System40
VI.	Appendix 1: Status of NOAA/CO-OPS GLOSS Stations in the United States42
VII.	Appendix 2: Status of additional operational non-GLOSS JASL NWLON
	Stations in the United States45
VIII.	Appendix 3: UHSLC Fast Delivery, JASL and Real-Time data sets
IX.	References
	2

U.S. National Report Figures and Tables

Figure 1. Launch of Jason-2	11
Figure 2. Platform Harvest Verification Site of NOAA NOS Gauges	13
Figure 3. New Google map interface for Relative Sea Level Trends	21
Figure 4. New Google map interface for Sea Level Anomalies (shown for December 1997).	21
Figure 5. Sea level trend analyses	22
Figure 6. Long-term variation in trends	22
Figure 7. The monthly mean sea level anomalies are updated monthly	23
Figure 8. The NOAA web-site for viewing information on sea level trends and monthly mea	'n
sea level anomalies at global tide stations	24
Figure 9. One of the US NOAA Sentinel Tide Stations in the Gulf of Mexico	33
Figure 10. Schematic of Point Barrow Testing Configuration	34
Figure 11. Deep-ocean Assessment and Reporting of Tsunami (DART®) stations	35
Figure 12. Conceptual diagram of the DART® System	35
rigure 12. Conceptual diagram of the DART® System	

Table 1. Ocean island NOAA NWLON stations which are being upgraded	8
Table 2. Stations currently operated by UHSLC	9
Table 3. Global Climate Reference Stations with Sea Level Analysis Completed	24
Table 4. Long-term CO-OPS water level stations within 10 kilometers of National Geodetic	
Survey (NGS) CORS-GPS stations	29
Table 5. PRSN Sea Level Stations in Puerto Rico, USA	39

I. Introduction

The 2009 United States (U.S.) National Report to the Global Sea Level Observing System (GLOSS) Group of Experts (GE) XI is a summary of various ongoing U.S. programs and activities that support GLOSS goals and objectives as outlined in the GLOSS Implementation Plan. While programs and activities addressing sea level in the U.S. extend from federal to academic, this report focuses on four primary U.S. contributions to GLOSS:

- The National Oceanic and Atmospheric Administration (NOAA) Office of Climate Observations,
- The NOAA National Ocean Service Water Level Program, managed by the Center for Operational Oceanographic Products and Services,
- The University of Hawaii Sea Level Center, and
- U.S. support for satellite altimeter operations and research

The first section of the report provides an overview of the U.S. contribution to GLOSS through NOAA's Office of Climate Observations; the second section provides updates on operating status of the various components of the system. The third section provides updates on product development and delivery of data, including database support and web products, followed by the fourth section providing information on advancements in technology. Finally, the fifth section discusses regional activities in support of GLOSS.

The U.S. continues to be a leader and primary contributor to the international climate and sea level community. Vital to this continued support are international partnerships, innovative technological solutions, and sustained infrastructure for observing systems. The U.S. looks forward to continuing and enhancing collaborative sea level efforts with the international community.

NOAA Office of Climate Observations

The Global Climate Observing System (GCOS) is intended to be a long-term, user-driven operational system capable of providing the comprehensive observations required for:

- Monitoring the climate system,
- Detecting and attributing climate change,
- Assessing impacts of, and supporting adaptation to, climate variability and change,
- Application to national economic development,
- Research to improve understanding, modeling and prediction of the climate system.

GCOS addresses the total climate system including physical, chemical and biological properties, and atmospheric, oceanic, terrestrial, hydrologic, and cryospheric components. GLOSS is a primary component of GCOS.

Global Sea Level Observing System GE XI

The goal of the NOAA Office of Climate Observations (OCO) is to build and sustain the ocean component of GCOS that will respond to the long term observational requirements of the operational forecast centers, international research programs, and major scientific assessments (www.oco.noaa.gov). The requirements are to:

- document long-term trends in sea level change;
- document ocean carbon sources and sinks;
- document the ocean's storage and global transport of heat and fresh water;
- document ocean-atmosphere exchange of heat and fresh water.

In order for NOAA to fulfill its climate mission, the global ocean must be observed. The ocean is the memory of the climate system and is second only to the sun in effecting variability in the seasons and long-term climate change. A global observing system by definition crosses international boundaries, with potential for both benefits and responsibilities to be shared by many nations. All of NOAA's contributions to global ocean observation are managed in cooperation with the Joint World Meteorological Organization (WMO) - Intergovernmental Oceanographic Commission (IOC) of UNESCO Technical Commission for Oceanography and Marine Meteorology (JCOMM). At present, NOAA provides funding for nearly half of the *in situ* elements of the international ocean climate observing system

Sustained Ocean Observing System

The Networks that make up the Sustained Ocean Observing System for Climate are: tide gauge stations, dedicated ships, ships of opportunity, ocean reference stations, Arctic observing systems, tropical moored buoys, surface drifting buoys, Argo profiling floats, data and assimilation subsystems, product delivery, and continuous satellite missions for sea surface temperature, sea surface height, surface vector winds, ocean color, and sea ice. NOAA OCO contributes to global implementation of all networks except the satellites.

The system design that guides the OCO program is documented in the international Global Climate Observing System *Implementation Plan for the Global Observing System for Climate in support of the UNFCCC* (GCOS-92, 2004) (http://www.wmo.ch/pages/prog/gcos). GCOS-92 was published in October 2004. It has been endorsed by the UNFCCC and by the Group on Earth Observation (GEO).

NOAA's *Program Plan for Building a Sustained Ocean Observing System for Climate* (NOAA, 2004) is in complete accord with GCOS-92 and provides the framework for NOAA contributions to the international effort. In particular 21 of the specific actions listed in the GCOS-92 ocean chapter (pages 56-84) are being acted upon by the OCO program in cooperation with the implementation panels affiliated with JCOMM – for sea level the implementation panel is the GLOSS Group of Experts (GE). These specific GCOS-92 actions now provide an excellent roadmap to guide observing system work plans. GCOS-92 is accessible via link from the OCO web site: www.oco.noaa.gov -- click on "Reports & Products." All of the work supported by

Global Sea Level Observing System GE XI

OCO is directed toward implementation of this international plan and the projects are being implemented in accordance with the GCOS Ten Climate Monitoring Principles. The initial system as described in GCOS-92 is presently about 60% complete.

Implementation of the Networks is managed at 22 distributed centers of expertise -- NOAA laboratories, centers, joint institutes, universities and business partners. The composite System is centrally managed at the OCO Project Office. Specifically, OCO's tasks are to:

- Monitor the status of the globally distributed networks; report system statistics and metrics routinely and on demand;
- Evaluate the effectiveness of the system; take action to implement improvements through directed funding;
- Advance the multi-year program plan; evolve the *in situ* networks through directed funding;
- Focus intra-agency, interagency, and international coordination;
- Organize external review and user feedback; and
- Produce annual reports on the state of the ocean and the adequacy of the observing system for climate.

Tide gauge stations are necessary to the climate program for accurately measuring long-term trends in sea level change and for calibration and validation of the measurements from satellite altimeters, which are assimilated into global climate models for predicting climate variability and change. Many tide stations need to be upgraded with modern technology particularly in less developed countries. Permanent GPS receivers are being installed, leading to a geocentrically located subset of 170 GCOS Climate Reference Stations. The 170 Climate Reference Stations are also being upgraded for real-time reporting, not only for climate monitoring, but also to support marine hazard warning (e.g., tsunami warning). This Climate Reference Station subset of the GLOSS core network is the focus of OCO support.

The University of Hawaii Sea Level Center is a NOAA partner who assists in the coordination of tide gauge operations within the international community. NOAA provides long-term support for the climate work at the UHSLC. Sea level stations within the U.S. are primarily operated by NOAA's Center for Operational Oceanographic Products and Services (CO-OPS).

II. Global Sea Level Observing Network Components and Operating Status

A. Tide Station Networks

Global Sea Level Observing System GE XI

NOAA National Ocean Service

NOAA has operated and maintained a network of coastal sea level (tide gauge) stations for over 150 years, and is the legal authority for sea level in the U.S. The NOAA National Ocean Service (NOS) Center for Operational Oceanographic Products and Services (CO-OPS) operates 205 long-term sea level stations, called the National Water Level Observation Network (NWLON), the primary backbone of the National Water Level Program (NWLP). CO-OPS sea level stations are multi-purpose, supporting multiple applications with both real-time and long-term data, from safe and efficient navigation and coastal hazard mitigation to coastal zone management and climate observation. CO-OPS provides an "end-to-end" system of data collection, quality control, data management, and product delivery. CO-OPS maintains a rigorous set of standards and methodologies and is recognized for the high level of accuracy and reliability in data delivery. Information on CO-OPS standards and protocols can be found at: http://tidesandcurrents.noaa.gov/pub.html

In addition to maintenance of this long-term network, CO-OPS has been tasked with three primary activities in support of NOAA's Office of Climate Observations, together comprising its primarily contribution to GLOSS:

1) Develop and implement a routine annual sea level and extreme event analysis reporting capability that meets the requirements of the Climate Observation Program.

2) Upgrade the operation of selected National Water Level Observation Network Stations to ensure continuous operation and connection to geodetic reference frames.

3) Operate and maintain water level measurement systems on Platform Harvest in support of calibration of the TOPEX/Poseidon and Jason 1 satellite altimeter missions.

Several NWLON stations have been identified as critical components of GLOSS (See Appendix 1 for a full listing). 29 of the 205 NOAA NWLON stations are considered GLOSS stations, and contribute to the Joint Archive for Sea Level (JASL). Appendix 2 is a listing of additional NOAA sea level stations currently contributing to the JASL database. There are 54 total NOAA operational NWLON stations that actively contribute to the JASL archive. The 18 NWLON stations identified at the 1997 International Sea Level Workshop as critical to the global system for monitoring long term sea level trends are also identified in the tables as Climate Reference Network (CRN) stations.

Upgrade of NOAA Ocean Island Station Operations

Several coastal and island NWLON stations are critical to the Global Climate Observing System (GCOS). Annual maintenance is extremely important at these often remote locations, due to the fact that corrective maintenance is logistically very difficult and expensive. Redundancy in data collection and transmission is also critical, as these data sets are very important, and their

continuity and integrity must be maintained.

Although operation of all of the long-term NWLON and GLOSS stations is important, NOAA NWLON Ocean Island stations were targeted for priority upgrade to ensure their continuous operation. These upgrades have included high accuracy acoustic or paroscientifc pressure sensors and redundant Data Collection Platforms (DCPs) with equal capability to the existing primary systems. Now that hardware upgrades of most of the highest priority stations are complete, stations will continue to be enhanced where needed with connections to geodetic reference systems (through leveling and/or GPS), followed by installation of NGS Continuously Operating Reference Systems (CORS) at selected sites. Table 1 provides a list of the ocean island NWLON stations (not including Hawaii) that were considered in this category as priority for upgrade. Stations with outstanding work in geodetic connections and CORS are marked "No" in the respective category and will be addressed over the next two years.

Table 1. Ocean island NOAA NWLON stations (not including Hawaii) which are being upgraded.

Station	Upgraded	Geodetic Connection	CORS (GPS)
Guam	Yes	Yes	Yes
Kwajalein	Yes	Yes	Yes
Pago Pago	Yes	Yes	Yes
Wake Island	Yes	Yes	No
Midway	Yes	No	No
Adak	No	Yes	No
Bermuda	Yes	Yes	Yes
San Juan, PR	Yes	Yes	Yes
Magueyes Island, PR	Yes	Yes	Yes
Charlotte Amalie, VI	Yes	Yes	Yes
St. Croix, VI	Yes	Yes	Yes

University of Hawaii Sea Level Center

The University of Hawaii Sea Level Center (UHSLC) collects, processes, and distributes tide gauge measurements from around the world in support of various climate research activities. Primary support for the UHSLC is provided by the NOAA Office of Climate Observation (OCO). UHSLC datasets are used for a variety of research and operational activities, including assessments of sea level rise and variability, the calibration of altimeter data, and storm surge and tsunami monitoring. In support of satellite altimeter calibration and for absolute sea level rise monitoring, the UHSLC and the Pacific GPS Facility maintain co-located GPS systems at select tide gauge stations (GPS@TG). The UHSLC currently is a designated CLIVAR Data Assembly Center (DAC) and an IOC GLOSS data archive center. The UHSLC distributes data

Global Sea Level Observing System GE XI

directly from its own web site and through a dedicated OPeNDAP server. The data are redistributed by the National Oceanographic Data Center (NODC), the Permanent Service for Mean Sea Level, the Climate Data Portal (CDP) maintained by the Pacific Marine Environmental Laboratory (PMEL), the National Virtual Ocean Data System (NVODS), the International Pacific Research Center's GODAE data server, and the NOAA Observing System Architecture (NOSA) web site.

The UHSLC collaborates in the operation of 64 tide gauge stations in the global sea level network. All of these sites meet GLOSS standards for tsunami monitoring and are currently providing data to appropriate warning centers. The UHSLC in collaboration with the Pacific GPS Facility operates co-located continuous GPS (GPS@TG) receivers at 7 tide gauges, which constitute to the NASA/CNES Science Working Team for altimeter calibration, and provide local estimates of absolute sea level rise.

The UHSLC distributes three sea level data sets: Joint Archive for Sea Level (JASL), Fast Delivery Database, and Near Real-Time Data (See Section III: Product Development and Delivery).

GLOSS	STATION	COUNTRY	LAT	LONG	GPS?
267	Acapulco	Mexico	16° 59'N	099° 55'W	
068	Ambon	Indonesia	03° 41'S	128° 11'E	
169	Baltra	Ecuador	00° 26'S	090° 17'W	
049	Benoa	Indonesia	08° 46'S	115° 13'E	
069	Bitung	Indonesia	00° 27'N	125° 12'E	
036	Chittagong	Bangladesh	22° 20'N	091° 38'E	
146	Christmas	Rep. of Kiribati	01° 59'N	157° 28'W	
291	Cilacap (Cillcap)	Indonesia	07° 45'S	109° 00'E	
033	Colombo	Sri Lanka	06° 57'N	079° 51'E	
253	Dakar	Sénégal	14° 41'N	017° 25'W	
071	Davao	Philippines	07° 50'N	125° 38'E	
026	Diego Garcia	United Kingdom	07° 17'S	072° 24'E	
245	Fortaleza	Brazil	03° 43'S	38° 28'W	
107	French Frigate S	USA	23° 52'N	166° 17'W	
027	Gan	Rep. of Maldives	00° 41'S	073° 09'E	
XXX	Hanimaadhoo	Rep. of Maldives	06° 46'N	073° 10'E	
109	Johnston	USA Trust	16° 44'N	169° 32'W	
145	Kanton	Rep. of Kiribati	02° 49'S	171° 43'W	
117	Kapingamarangi	Fd St Micronesia	01° 06'N	154° 47'E	
042	Ko Taphao Noi	Thailand	07° 49'N	098° 25'E	
XXX	Lamu	Kenya	02° 16'S	040° 54'E	
XXX	Langkawi	Malaysia	06° 52'N	099° 46'E	

Table 2. Stations currently operated by UHSLC.

Global Sea Level Observing System GE XI

XXX	Lombok (Lembar)	Indonesia	08° 45'S	116° 04'E	
120	Malakal	Rep. of Belau	07° 20'N	134° 28'E	GPS@TG
028	Male (Hulhule)	Rep. of Maldives	04° 11'N	073° 32'E	GPS@TG
073	Manila	Philippines	14° 38'N	121° 05'E	
163	Manzanillo	Mexico	19° 03'N	104° 20'W	GPS@TG
192	Mar Del Plata	Argentina	38° 02'S	057° 32'W	
XXX	Masirah	Oman	20° 41'N	058° 52'E	
008	Mombasa	Kenya	04° 04'S	039° 39'E	
141	Moulmein	Myanmar	16° 29'N	097° 37'E	
142	Nuku Hiva	French Polynesia	08° 55'S	140° 06'W	
045	Padang	Indonesia	00° 57'S	100° 22'E	
329	Palmeira (C.Verde	e)Portugal	16° 45'N	022° 59'W	GPS@TG
140	Papeete	French Polynesia	17° 32'S	149° 34'W	
137	Pascua Is. (Easter)	Chile	27° 09'S	109° 27'W	
143	Penrhyn	Cook Islands	08° 59'S	158° 03'W	
245	Ponta Delgada	Portugal	37° 44'N	025° 40'W	
018	Port Louis	Mauritius	20° 09'S	057° 30'E	
XXX	Prigi	Indonesia	08° 17'S	111° 44'E	
273	Pt. LaRue	Seychelles	04° 40'S	055° 32'E	
075	Qui Nhon	Vietnam	13° 47'N	109° 15'E	
138	Rikitea	French Polynesia	23° 08'S	134° 57'W	
019	Rodrigues	Mauritius	19° 40'S	063° 25'E	
XXX	Sabang	Indonesia	05° 50'N	095° 20'E	
118	Saipan	USA	15° 14'N	145° 45'E	
004	Salalah	Oman	16° 56'N	054° 00'E	
XXX	Salvador	Brazil	12° 58'S	038° 31'W	
XXX	Santa Cruz	Ecuador	00° 45'S	090° 19'W	
XXX	Saumlaki	Indonesia	08° 00'S	131° 18'E	
211	Settlement Pnt.	Bahamas	26° 41'N	078° 59'W	GPS@TG
XXX	Sibolga	Indonesia	01° 44'N	098° 48'E	
037	Sittwe	Myanmar	20° 09'N	092° 54'E	
XXX	Subic Bay	Philippines	14° 49'N	120° 17'E	
175	Valparaiso	Chile	33° 02'S	071° 38'W	GPS@TG
XXX	Vung Tau	Vietnam	10° 20'N	107° 15'E	
119	Yap	Fd St Micronesia	09° 31'N	138° 08'E	
297	Zanzibar	Tanzania	06° 09'S	039° 11'E	

Note: GPS@TG indicates which stations have UHSLC GPS co-located at the tide stations.

B. Satellite Altimeter Activities

Satellite Altimeter Operations

The launch of the Jason-2/Ocean Surface Topography Mission (Figure 1), on June 20, 2008, marks an important turning point in the evolution of satellite radar altimetry. Jason-2/OSTM is a joint effort of NOAA, NASA, France's Centre National d'Etudes Spatial (CNES), and the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT). Its primary goal is to maintain continuity of the nearly two-decade record of ocean surface topography measurements established by the TOPEX/Poseidon and Jason-1 altimeter missions. These observations have proven be invaluable in the study of global mean sea level change, showing sea level rising at approximately 3.1 mm/yr between 1993 and 2009, more than 50% faster than over the past century, as well as revealing important new insights into eddy variability in the ocean and large-scale circulation changes. However, Jason-2/OSTM is different than its predecessors in that two operational agencies, NOAA and EUMETSAT, are participating for the first time. Plans are underway for a follow-on Jason-3 mission, to be launched in 2013 as a joint effort of NOAA, EUMETSAT and CNES.

Figure 1. Launch of Jason-2.

During the first 6 months of operation, known as the Tandem Mission, Jason-2/OSTM was flown along the same repeat orbit as Jason-1, but separated by 1 minute. In mid-February, 2009, Jason-1 was moved to an orbit that interleaves and lags Jason-2/OSTM by 5 days, effectively doubling the resolution of observations (157 km vs 315 km track spacing at equator, 5 day vs 10 day repeat period), thereby greatly improving the ability to monitor meso-scale sea level variability. The two satellites will continue this mode of operation, known as the Interleave Mission, indefinitely.

NOAA, working with CNES, is providing ground system support for Jason-2/OSTM. This includes command and control of the satellite, downloading telemetry, producing near-real time data products (OGDRs) and archiving and distributing all data products. EUMETSAT is sharing with NOAA the responsibility for downloading telemetry and producing OGDRs. CNES is producing all interim and final science data products (IGDRs and GDRs), as well as archiving and distributing them.

Satellite Data Analysis and Altimeter Drift Estimation

From the beginning of the TOPEX/Poseidon (T/P) mission, methods to estimate altimeter drift from comparisons with the global tide gauge network have continuously evolved, first in a research mode with NASA funding, and later becoming more general and operationally-oriented with some additional support from NOAA.

By the year 2000 the fundamental statistical footing for the method was firmly established, and it had been found that land motion at the tide gauges was the largest remaining source of error when estimating linear drift rates for the altimeters. To this point, however, the method, despite being quite general had only been applied on a regular basis to the TOPEX/Poseidon dataset. Also, a variety of versions of the basic programs existed for estimations based on data from different groups around the country.

With NOAA support, the University of South Florida (USF) has been able to take on the task of unifying the procedures for use on any altimeter dataset, and begin to put together a system that would enable taking in datasets from any source with relatively little difficulty.

USF now has in place an operational facility for comparing any available altimeter dataset to the global set of tide gauges using consistent, and proven, methods. These comparisons allow the estimation of any temporal drifts in the altimeter datasets, and allow us to combine the different altimeter datasets into a single consistent sea surface height database. This last point follows from the fact that these comparisons will be semi-absolute, in the sense that vertical offsets between different altimeters, even those which do not overlap in time, are determined as part of the procedure.

On a quasi-monthly basis USF downloads, processes and quality controls all of the tide gauge datasets that are used in USF products. These datasets are updated on a monthly basis at the University of Hawaii Sea Level Center, and this timing sets a natural updating frequency for our products. In addition to updating the tide gauge datasets, code to translate any new altimeter products into the format required by our general routine must be written. This has been done for several altimeter products.

Global Sea Level Observing System GE XI

Satellite Altimeter Calibration

NOAA National Ocean Service (NOS) support for the TOPEX/Poseidon satellite altimeter mission through operation of a tide gauge station at Platform Harvest provides water level measurements relative to the satellite altimeter closure analysis reference frame for calibration monitoring (B. Haines et al, 2003; Figure 2). Additional support includes vertical surveys on the Platform necessary to relate the water level sensor reference zeros (near the bottom catwalk) to the Global Positioning System (GPS) reference zero (located up top at the helipad on the Platform). Continuous data are required to monitor effects of waves on the water level measurements and to ensure provision of data during the times of altimeter over-flights every ten days. Platform Harvest tide gauge operations currently includes two digital bubbler pressure systems collecting continuous water level data streams surveyed into the Platform and Satellite Orbit Reference frames. Platform Harvest is one of several calibration sites located around the globe.

Figure 2. Platform Harvest Verification Site of NOAA NOS Gauges.

C. Geodesy and Positioning

The National Geodetic Survey (NGS), an office of NOAA's National Ocean Service (NOS), is responsible for defining, maintaining and providing access to the National Spatial Reference System (NSRS). The NSRS is used by all civilian federal agencies and most of the public to establish coordinates for legal purposes. In the last 10 years the geometric component of the

Global Sea Level Observing System GE XI

NSRS, latitude, longitude and ellipsoidal heights (NAD83) has been defined via space geodetic techniques, especially GPS.

In 1986 NGS established a Continuously Operating GPS reference station network called the Cooperative International GPS Network (CIGNET) with three stations. By 1991 CIGNET had grown to 21 stations and in 1994 it was transferred to the International GPS Service now the International GNSS Service (IGS). Also in 1994 NGS established a new GPS network focused in the United States called the Continuously Operating Reference Station (CORS) network. It provides Global Navigation Satellite Systems (GNSS) data consisting of carrier phase and code range measurements in support of three dimensional positioning, meteorology, space weather, and geophysical applications throughout the United States, its territories, and a few foreign countries. Surveyors, GIS users, engineers, scientists, and the public at large that collect GPS data can use CORS data to improve the precision of their positions.

CORS-enhanced post-processed coordinates approach a few centimeters relative to the NSRS, both horizontally and vertically. The CORS network is a multi-purpose cooperative endeavor involving government, academic, and private organizations that independently own and operate each CORS. Each agency shares their data with NGS, and NGS in turn analyzes and distributes the data free of charge. As of April 2009, the CORS network contains over 1,300 stations, contributed by over 200 different organizations, and the network is growing at a rate of approximately 15 stations per month.

From the basic foundation established by the CORS network, NGS participates in a number of ways to support positioning of water level/tide gauge stations.

- NGS, in collaboration with CO-OPS and others, has established and operates a number of CORS located within 1 km of current CO-OPS National Water Level Observation Network (NWLON) stations. Most recently NGS installed a CORS at Battery Park, New York and in Key West, Florida.
- In addition NGS has successfully collaborated with CORS network partners to establish CORS near NWLON stations at a few locations, most recently in Galveston, Texas, and Charleston, South Carolina.
- NGS analyzes the data from all CORS and publishes their daily coordinates and long-term velocities in both ITRF and NAD83.
- NGS defines the standards and guidelines for geodetic leveling that CO-OPS and its contractors use to level between tide gauge/water level stations and reference bench marks.
- NGS is a founding member of the IGS, is one of the 10 Analysis Centers and contributes rapid and final GPS orbits to IGS. It is also an IGS Regional Data Center.

- Currently NGS is also the IGS Analysis Center Coordinator (ACC) for the period 2008-2012. Of the 10 current IGS Analysis Centers, one is selected to perform the main product combination and quality control operations. The core efforts are the Ultra-rapid (used by real-time users), Rapid (for high-accuracy, near-real time uses), and Final (for definitive products) products which consist of satellite orbits, clock and associated Earth orientation parameters.
- NGS is reprocessing all GPS orbits in conjunction with other IGS Analysis Centers from 1994 to present to create a new uniform Final GPS orbit data set as well as to support the future versions of International Terrestrial Reference Frame (ITRF). One step in this effort was that in January 2009 all AC's submitted reprocessed GPS data from 2000-to present that will be used along with Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) data for creating ITRF2008 which should be released in the fall of 2009. Simultaneously NGS is also reprocessing all CORS network data in its holdings and anticipates having results at the end of 2010. NGS will use these results to quantify vertical crustal motion throughout the United States and this information can then be used in conjunction with global and local sea level change estimates to estimate changes in flooding in coastal areas.
- Within the NGS reprocessing effort, we have included most of the IGS Tide Gauge Benchmark Monitoring (TIGA) Pilot project omitting mostly sites in Europe and will publish weekly SINEX files with their coordinates in ITRF as well as stacked solution using the CATREF software.
- NGS is the primary source of data for five GPS stations contained in the ~120 fiducial reference frame stations used to define the ITRF that is maintained by the International Earth Rotation and Reference System Service (IERS).
- NGS provides a collection of Web services called Online Positioning User Service (OPUS). These services allow a user to upload GPS data that they have collected to NGS and receive back a coordinate based on automated processing by NGS on its servers using its own software. The two main services are OPUS-Static (OPUS-S) that allows a user to upload a data set that is at least two hours in duration and OPUS-RapidStatic (OPUS-RS) which requires a minimum of only 15 minutes of data. One of the most recent of the OPUS services is called OPUS-Database (OPUS-DB) which allows a user to upload a data set with associated metadata and store it in an NGS database and publish the coordinates for use by others. CO-OPS and NGS plan to use OPUS-DB to process and archive the GPS data collected by CO-OPS on benchmarks at NWLON stations.

III. Product Development and Delivery

A. Current Sea Level Research and Derived Products

University of South Florida Altimeter Products

The University of South Florida has expanded and improved its suite of products available to users over the past few years. A set of time series describing the differences of the various altimeter datasets relative to the global tide gauge network is now available. These series are defined on a zero that is essentially the mean of the TOPEX Side A altimeter dataset. This work has been completed and a manuscript is presently in preparation.

There has also been a concerted effort to reduce the land motion uncertainties. This work has been done in collaboration with the TIGA work of Guy Wöppelmann and Tilo Schöne . These errors are presently the largest source of uncertainty in the altimeter drift estimation, but this error component is steadily decreasing thanks to the expansion of the set of continuously operating GPS receivers at tide gauges, and the lengthening of the GPS time series. The products that are now available use the present best information on land motion derived from a set of about nearly 100 GPS receivers. In addition, FSU has made substantial progress in putting proper error bars on these land motion estimates and matching these to individual tide gauges. A second manuscript is in preparation describing these results.

The system USF has in place assumes that there are a finite number of altimeter databases that will be updated on a roughly monthly basis, assuming changes to that database had occurred, of course. This led to a well-defined set of codes. What has become apparent, however, is that users of this system increasingly want to use these tide gauge analyses as a way of checking and improving their development of the altimeter sets rather than simply as hindsight check on how they are doing. This is particularly true for users developing Jason-1/2 datasets.

For example, if someone is developing alternate sea state bias corrections, they would like to send a dataset, have an analysis done, examine the results, modify their corrections, and repeat. This sort of iterative cycle can be repeated many times. USF is also doing these sorts of calculations for multiple altimeter groups. The net result is the need for a much more responsive system and the ability to handle multiple versions of the same altimeter databases. This will require substantial additional coding and the development of more sophisticated database management methods by the PI and his group. Good progress has been made and the work is expected to be completed by the end of the summer of 2009.

USF is also in the process of streamlining the annual updating and selection of the tide gauges used in the analyses. USF expects to be able (on the same time frame) to utilize a set of nearly 100 gauges (c.f., the present set of 64) that have an improved global coverage, particularly in the Southern Hemisphere, and make use of improved land motion corrections.

Global Sea Level Observing System GE XI

Finally, after the system was set up, feedback from users has led to work on several changes and improvements. First, the decision to reference to a "standard" TOPEX dataset was very unpopular and we are re-coding to replace this with a reference to whichever TOPEX dataset the user specifies. Second, as the time series have lengthened, questions about the handling of long period tides, particularly the Msf and Mf components, have been raised and we are adapting our methods appropriately. Third, in order to be able to treat new missions as soon as possible (i.e., after only two cycles were in hand), the optimization procedure was changed for determining the altimeter, tide gauge height differences. This led to somewhat larger random errors, which is not necessary. USF is presently doing simulations that will allow us to decide quantitatively when a given altimeter series is long enough to use the original method, and the code will be modified to make this switchover automatically once that happens. These changes are expected to be completed by the end of the summer of 2009.

University of Hawaii Sea Level Center Research

The UHSLC directly assists less developed countries in the maintenance and operation of 64 sea level stations. In 2008, the UHSLC developed a method for estimating the global sea level trend using the GCOS Climate Reference Network of sea level stations. This analysis is consistent with altimetry over the satellite period and also includes gauge records prior to satellite measurements. It has potential to provide continuous trend analysis should there be a future break in the altimeter record.

NOAA Research

Under the NOAA NCDC Integrated Data and Environmental Applications (IDEA) Center's nascent Pacific Region Integrated Climatology Information Products (PRICIP) project sea level station records in the Pacific are being analyzed to delineate sea level patterns and trends within and between locations and regions, how they have been expressed historically, and may be expected to be expressed in a changing climate (i.e.., via trend analysis, extreme-value analysis, and cross-correlations to climate indices). PRICIP is a collaborate effort that includes representatives from NCDC, CO-OPS, CSC, and the NWS, as well as the University of Hawai`i, University of Alaska, University of Guam, and Oregon State University, NASA, and the USGS.

Additionally, a small working group was recently formed to coordinate NOAA efforts to study such problems and improve the prediction of the global average rate of sea level rise. The group includes representatives from CPO, GFDL, PMEL, NODC, and LSA at present. Work to date includes:

- LSA researchers have recent publication of the first closed estimate of the sea level rise budget with altimeter, Argo, and GRACE observations;
- A retrospective analysis of IPCC projections of sea level rise, supported by CPO funds awarded to STAR's cooperative institute at the University of Maryland; and

Global Sea Level Observing System GE XI

• GFDL' work on an improved state-of-the-art Earth System Model that will predict with quantified uncertainties global sea level rise and the spatial variability in sea level change due to ocean dynamics.

B. Data Delivery

Database Support and Maintenance

Permanent Service for Mean Sea Level (PSMSL)

Since 1933, the Permanent Service for Mean Sea Level (PSMSL) has been responsible for the collection, publication, analysis and interpretation of sea level data from the global network of tide gauges. Both NOAA and the University of Hawaii Sea Level Center contribute sea level data to PSMSL for long-term archival. <u>http://www.pol.ac.uk/psmsl/</u>.

NOAA Database and Delivery

The NESDIS National Data Centers (NCDC, NODC, and NGDC) archive and disseminate the basic datasets used to determine both global (absolute) SLR and local (relative) SLR. These include all NOAA satellite and in-situ station data used in constructing SLR analyses (altimetry, geodetic control, atmospheric observations, SSTs and ocean thermal properties, etc.).

The NWLON is also multipurpose and supports other NOAA missions that are national in scope:

- It is a fundamental component of NOAA's capability for storm surge monitoring and warning. The NWLON data are routine data sets to the NOAA Advanced Weather Information Processing System (AWIPS) system. The NWLON stations also can be automatically put into high-rate satellite dissemination on a user-driven or event-driven trigger. These data become part of the National Weather Service (NWS) pipeline for marine forecasts. An increasing percentage of the NWLON stations have meteorological sensors installed.
- It is a fundamental component of NOAA's capability for tsunami warning. The NOAA Tsunami Warning Centers have access to high-rate data through the GOES when events are manually or automatically triggered.

In addition to meteorological sensors, the NWLON stations are capable of adding other sensors for long-term measurements for water conductivity and temperature and for water quality parameters.

A comprehensive CO-OPS web-site is maintained and allows users full access to all data and products on a 24 X 7 basis (<u>http://tidesandcurrents.noaa.gov</u>). All raw observed data (6-minute data with quality control flags attached) are automatically available over the web-site after the

Global Sea Level Observing System GE XI

data collection systems receive each hourly transmission and after they undergo the quality control checks. Derived data products are made available through the web-site after verification.

Access to 1-minute water level data is now available through CO-OPS' tsunami website: <u>http://tidesandcurrents.noaa.gov/tsunami/</u>. This site was developed in collaboration with the NOAA Tsunami Warning Centers and the Pacific Marine Environmental Laboratory (PMEL) to support tsunami warning and modeling efforts.

Harmonic analyses are routinely performed and accepted sets of harmonic constants used for tidal prediction are maintained in the database and made available over the web-site. Tide prediction products based upon the accepted sets of harmonic constituents are also made available "on-the-fly" over the web-site.

Great Lakes and Tidal datums are updated over time and system-wide tidal datum updates to new National Tidal Datum Epochs are made using the archived data and derived products in the data base. Accepted tidal datums are maintained and can be accessed over the web-site as well. Tidal datums are computed using documented standard operating procedures. Published bench mark sheets showing bench mark locations and elevations are prepared and updated and accessible over the web-site.

During storm events and other human-induced events, real-time (6-minute) data are made immediately available to users (<u>http://tidesonline.nos.noaa.gov/</u> and <u>http://glakesonline.nos.noaa.gov/</u>.

Real-time water level data in context with other real-time data are accessible for some NWLON stations if they are part of a local PORTS® (<u>http://tidesandcurrents.noaa.gov/d_ports.html</u>).

A number of 6 and 1-minute data products are available through the Integrated Ocean Observing System (IOOS) Web Portal, available through an OPeNDAP Server in a variety of formats. http://opendap.co-ops.nos.noaa.gov/content/

Sea level data associated sea level products are all available over the web-site for use by PSMSL, UHSLC, and the WOCE communities.

University of Hawaii Sea Level Center

The UHSLC distributes three sea level data sets. For a detailed station listing, please refer to the Appendices.

Joint Archive for Sea Level (JASL)

The Joint Archive for Sea Level JASL data set is designed to be user friendly, scientifically valid, well-documented, and standardized for archiving at international data banks. JASL data

Global Sea Level Observing System GE XI

are provided internally by the UH Sea Level Network and by over 60 agencies representing over 70 countries. In the past year, the UHSLC increased its JASL holdings to 10,952 station-years of hourly quality assured data. The JASL set now includes 6397 station years of data in 297 series at 228 GLOSS sites.

Fast Delivery Database

The Fast Delivery Database supports various international programs, in particular CLIVAR and GCOS. The database has been designated by the IOC as a component of the GLOSS program. The fast delivery data are used extensively by the altimeter community for ongoing assessment and calibration of satellite altimeter datasets. The fast delivery sea level dataset now includes 251 stations, 190 of which are located at GLOSS sites.

Near Real-Time Data

Near Real-Time Data (collection + up to a three hour delay, H-3 delay) and daily filtered values (J-2 delay) are provided by the UHSLC in support of GODAE. Approximately 64 stations currently are available in real-time with plans for ongoing expansion.

The UHSLC provides monthly maps of the Pacific sea level fields through the JCOMM. UHSLC also produces quarterly updates of an index of the tropical Pacific upper layer volume and annual updates of indices of the ridge-trough system and equatorial currents for the Pacific Ocean. The analysis includes tide gauge and altimeter sea surface elevation comparisons.

Web Products

NOAA Sea Levels Online

NOAA's primary delivery method of local sea level trends to the public is through its *Sea Levels Online* website (<u>http://tidesandcurrents.noaa.gov/sltrends</u>). This site provides access both to NOAA long-term NWLON stations and to international stations. In 2008, the Sea Levels Online website was redesigned and a new Google Map interface was introduced to provide easier access for users to water level stations in their region of interest (Figures 3 and 4).

In 2008, linear sea level trends were recalculated for all NWLON stations with trends published in the previous NOAA Technical Se Level Trends Report (Zervas, 2001), as well as analyses of 12 additional U.S. stations using all available data up to the end of 2006. Analyses of sea level trends and variability are currently available for 128 long-term NWLON stations at *Sea Levels Online*. Figures 5-7 illustrate the types of analyses available for all long-term stations.

Figure 3. New Google map interface for Relative Sea Level Trends.

Figure 4. New Google map interface for Sea Level Anomalies (shown for December 1997).

Mean Sea Level Trend 1612340 Honolulu, Hawaii

Figure 5. Sea level trend analyses.

Figure 6. Long-term variation in trends.

Global Sea Level Observing System GE XI

Interannual variation 1612340 Honolulu, Hawaii

Figure 7. The monthly mean sea level anomalies are updated monthly.

Climate Reference Stations

62 water level stations were identified in the International Sea Level Workshop Report (1997) as a core global subset for long-term sea level trends. The Climate Observations Program Plan calls these climate "reference stations" and includes the following performance measures for the reference stations:

1. Routinely deliver an annual report of the variations in relative annual mean sea level for the entire length of the instrumental record.

2. Routinely deliver an annual report of the monthly mean sea level trend for the past 100 years with 95% confidence interval.

The CO-OPS technical report on sea level trends (Zervas, 2001) has been used as a starting template for an annual report. In addition to the analysis of long-term sea level trends and monthly mean sea level analyses, a new product is being developed to present summaries of the exceedance probabilities at selected stations.

In 2006, CO-OPS completed the development component of the routine analyses of these 62 reference stations, including 18 NWLON stations and 44 non-NOAA global stations. The monthly mean sea level data for the non-NOAA stations were obtained from the Permanent Service for Mean Sea Level (PSMSL) website. The data set obtained was their Revised Local Reference (RLR) data which has been carefully quality-controlled for datum continuity.

Global Sea Level Observing System GE XI

http://tidesandcurrents.noaa.gov/sltrends/sltrends_global.shtml

Figure 8. The NOAA web-site for viewing information on sea level trends and monthly mean sea level anomalies at global tide stations.

CO-OPS has now extended the compilation of the data and the reports from the 62 global reference stations to nearly all of the 182 stations identified in Annex IV of the Global Sea Level Observing System (GLOSS) Implementation Plan 1997 (IOC Technical Series No. 50) (<u>http://unesdoc.unesco.org/images/0011/001126/112650eo.pdf</u>) as GLOSS-LTT (Long Term Trend) (Table 3). 45 of the GLOSS-LTT stations are CO-OPS stations and their sea level trends and variations were already available on Sea Levels Online.

Table 3. Global Climate Reference Stations with Sea Level Analysis Completed.

Linear mean sea level (MSL) trends and 95% confidence intervals (in mm/yr)						
Source of data: PSMSL and NOAA; Analysis: NOAA						
Station Nome Eirst Veen Lest Veen Neen MSL 95% Confidence						
Station Name	riist real	Last I cal	I cal Kange	Trend	Interval (+/-)	
Reykjavik, Iceland	1956	2001	46	2.34	0.71	
Barentsburg, Norway	1948	2006	59	-2.99	0.67	
Murmansk, Russia	1952	2006	55	3.92	1.00	

Linear mean sea leve	el (MSL) tre	nds and 95%	% confidence	intervals (i	in mm/yr)			
Source	Source of data: PSMSL and NOAA; Analysis: NOAA							
Narvik, Norway	1928	2001	74	-3.09	0.59			
Heimsjo, Norway	1935	2006	72	-1.61	0.40			
Maloy, Norway	1945	2006	62	0.93	0.52			
Bergen, Norway	1883	2001	119	-0.52	0.23			
Stavanger, Norway	1881	2006	126	0.42	0.21			
Oslo, Norway	1885	2006	122	-4.53	0.34			
Smogen, Sweden	1911	2007	97	-1.92	0.27			
Goteborg, Sweden	1887	2003	117	-1.30	0.36			
Klagshamn, Sweden	1929	2007	79	0.53	0.48			
Kungholmsfort, Sweden	1887	2007	121	0.00	0.27			
Landsort, Sweden	1887	2007	121	-2.85	0.32			
Stockholm, Sweden	1889	2003	115	-3.94	0.35			
Ratan, Sweden	1892	2007	116	-7.75	0.41			
Furnogrund Sweden	1916	2007	92	-8.17	0.61			
Kemi Finland	1920	2006	87	-7.01	0.67			
Oulu/Uleaborg Finland	1889	2006	118	-6.38	0.43			
Raahe/Brahestad Finland	1922	2006	85	-6.81	0.13			
Pietarsaari/Jakobstad Finland	1914	2006	93	-7 32	0.61			
Vaasa/Vasa Finland	1883	2006	124	-7.36	0.36			
Kaskinen/Kasko Finland	1926	2006	81	-6 54	0.73			
Mantyluoto Finland	1910	2006	97	-5.96	0.53			
Turku/Abo Finland	1922	2006	85	-3.71	0.55			
Degerby Finland	1922	2006	83	-3.77	0.60			
Hanko/Hango Finland	1923	1997	111	-2.76	0.04			
Helsinki Finland	1879	2001	123	-2.70	0.42			
Hamina Finland	1079	2001	70	1.03	0.85			
Daugavgriva Latvia	1920	1038	67	-1.05	0.00			
Lienaja Latvia	1865	1936	72	0.10	0.72			
Kaliningrad Russia	1926	1986	61	1.84	0.72			
Warnemunde Germany	1920	2005	151	1.04	0.12			
Wismar Germany	18/18	2003	156	1.20	0.12			
Gedser Denmark	1898	2005	109	0.94	0.10			
Kobenhavn Denmark	1889	2006	118	0.74	0.15			
Hornback Denmark	1898	2000	109	0.45	0.21			
Korsor Denmark	1897	2000	110	0.25	0.25			
Slipshavn Denmark	1896	2006	110	0.73	0.17			
Fredericia Denmark	1890	2000	111	1.03	0.17			
Aarhus Denmark	1888	2000	110	0.56	0.12			
Frederikshavn Denmark	189/	2006	113	0.50	0.12			
Hirtshals Denmark	1892	2000	115	-0.20	0.10			
Fshierg Denmark	1889	1997	109	1.05	0.22			
Cuybayen Germany	18/3	2002	160	2.44	0.17			
Aberdeen UK	1862	2002	142	0.66	0.10			
North Shields UK	1802	2003	100	1.88	0.16			
Sheerness UK	1832	2005	175	1.00	0.10			
Newlyn LIK	1052	2000	80	1.04	0.10			
Brest France	1807	2003	10/	1.71	0.20			
La Coruna Spain	10/3	2000	6/	1 31	0.00			
Cascais Portugal	1882	1993	112	1.31	0.15			

Linear mean sea leve	Linear mean sea level (MSL) trends and 95% confidence intervals (in mm/yr)						
Source of data: PSMSL and NOAA; Analysis: NOAA							
Lagos, Portugal	1908	1999	92	1.50	0.24		
Marseille, France	1885	2000	116	1.20	0.16		
Genova, Italy	1884	1997	114	1.20	0.14		
Trieste, Italy	1905	2001	97	1.15	0.22		
Tuapse, Russia	1917	2002	86	2.24	0.65		
Ponta Delgada. Portugal	1978	2005	28	2.55	1.09		
Tenerife. Spain	1927	1999	73	1.53	0.31		
Takoradi, Ghana	1929	1970	42	3.35	0.50		
Walvis Bay, Namibia	1958	1998	41	0.33	1.44		
Simons Bay, South Africa	1957	2007	51	1.59	0.28		
Port Elizabeth. South Africa	1978	2007	30	3.13	1.40		
Durban, South Africa	1971	2007	37	0.63	0.62		
Aden, Yemen	1879	1969	91	1.23	0.20		
Karachi Pakistan	1916	1994	79	0.48	0.53		
Mumbai/Bombay India	1878	1994	117	0.74	0.12		
Cochin India	1939	2004	66	1 37	0.32		
Chennai/Madras India	1916	2003	88	0.31	0.41		
Vishakhanatnam India	1937	1996	60	0.54	0.52		
Ko Taphao Noi Thailand	1940	2006	67	0.34	1.06		
Ko Lak Thailand	1940	2000	63	-0.48	0.26		
Macau China	1925	1985	61	0.25	0.20		
Viaman China	1923	2002	49	1.02	0.50		
Vuzhno Kurilek Russia	1934	100/	49	2.74	0.00		
More Japan	1021	2001	71	2.74	0.02		
Aburatsubo Japan	1931	1000	71	3.00	0.24		
Kushimoto, Japan	1950	2007	51	3.33	0.27		
Hospiima Japan	1937	2007	79	0.53	0.02		
Topouro/Homodo, Jopon	1930	2007	100	-0.33	0.32		
Wajima Japan	1034	1000	70	0.38	0.24		
Manila Dhilinninas	1930	1999	70	-0.80	0.20		
Lagaspi Philippines	1901	2005	50	5.22	0.33		
Davao Philippines	1947	2005	58	5.22	1.30		
Jole Dhilinning	1940	1006	50	0.10	1.30		
Townsvillo Australia	1947	2006	18	0.19	0.44		
Nowcestle Australia	1939	1088	40 64	2.10	0.44		
Sydnoy Australia	1925	2003	118	0.50	0.40		
Eromontlo Austrolio	1807	2003	110	0.39	0.11		
Auckland New Zeeland	1007	2003	107	1.40	0.27		
Wellington New Zealand	1903	2000	90	2.41	0.20		
Lyttalton New Zealand	1944	2003	02	2.41	0.33		
Cuem Merienes Islands	1924	2000	11	2.30	0.29		
Church Caroline Islands	1948	1995	40	-1.03	1.72		
Kuusialain Marshall Islanda	1947	1993	49	0.00	1./8		
Welze Island	1940	2006	57	1.43	0.81		
vv ake Island	1930	2006	5/	1.91	0.39		
rago Pago, American Samoa	1948	2006	<u> </u>	2.07	0.90		
Iviidway Atoli	1947	2006	6U	0.70	0.54		
Jonnston Atoli	1947	2003	5/	0.75	0.56		
Honolulu, USA	1905	2006	102	1.50	0.25		
H110, USA	1927	2006	80	3.27	0.35		

Linear mean sea leve	Linear mean sea level (MSL) trends and 95% confidence intervals (in mm/yr)					
Source of	of data: PSM	ISL and NO	AA; Analysis:	NOAA	-	
Adak Island, USA	1957	2006	50	-2.75	0.54	
Seward, USA	1964	2006	43	-1.74	0.91	
Sitka, USA	1924	2006	83	-2.05	0.32	
Ketchikan, USA	1919	2006	88	-0.19	0.27	
Prince Rupert, Canada	1909	2006	98	1.09	0.27	
Vancouver, Canada	1910	1999	90	0.37	0.28	
Victoria, Canada	1909	1999	91	0.80	0.25	
Tofino. Canada	1909	2006	98	-1.59	0.32	
Neah Bay, USA	1934	2006	73	-1.63	0.36	
Friday Harbor, USA	1934	2006	73	1.13	0.33	
Seattle, USA	1898	2006	109	2.06	0.17	
Astoria, USA	1925	2006	82	-0.31	0.40	
Crescent City, USA	1933	2006	74	-0.65	0.36	
San Francisco, USA	1897	2006	110	2.01	0.21	
Los Angeles, USA	1923	2006	84	0.83	0.27	
La Jolla, USA	1924	2006	83	2.07	0.29	
San Diego, USA	1906	2006	101	2.06	0.20	
Balboa, Panama	1908	1996	89	1.38	0.27	
Buenaventura, Colombia	1941	1969	29	0.96	1.22	
La Libertad, Ecuador	1948	2003	56	-1.22	0.97	
Antofagasta, Chile	1945	2006	62	-0.75	0.48	
Puerto Deseado, Argentina	1970	2002	33	-0.06	1.93	
Puerto Madryn, Argentina	1944	2000	57	1.50	0.79	
Quequen, Argentina	1918	1982	65	0.85	0.31	
Buenos Aires, Argentina	1905	1987	83	1.57	0.30	
Montevideo, Uruguay	1938	1995	58	1.21	0.69	
Cananeia, Brazil	1954	2006	53	4.20	0.63	
Cartagena, Colombia	1949	1992	44	5.31	0.37	
Cristobal, Panama	1909	1980	72	1.41	0.22	
Galveston Pier 21, USA	1908	2006	99	6.39	0.28	
Pensacola, USA	1923	2006	84	2.10	0.26	
Key West, USA	1913	2006	94	2.24	0.16	
Bermuda	1932	2006	75	2.04	0.47	
Mayport, USA	1928	2006	79	2.40	0.31	
Fernandina Beach, USA	1897	2006	110	2.02	0.20	
Fort Pulaski, USA	1935	2006	72	2.98	0.33	
Charleston, USA	1921	2006	86	3.15	0.25	
Wilmington, USA	1935	2006	72	2.07	0.40	
Sewells Point, USA	1927	2006	80	4.44	0.27	
Washington, USA	1924	2006	83	3.16	0.35	
Annapolis, USA	1928	2006	79	3.44	0.23	
Baltimore, USA	1902	2006	105	3.08	0.15	
Philadelphia, USA	1900	2006	107	2.79	0.21	
Atlantic City, USA	1911	2006	96	3.99	0.18	
Sandy Hook, USA	1932	2006	75	3.90	0.25	
The Battery, USA	1856	2006	151	2.77	0.09	
Kings Point/Willets Point, USA	1931	2006	76	2.35	0.24	
Newport, USA	1930	2006	77	2.58	0.19	
Woods Hole, USA	1932	2006	75	2.61	0.20	

Global Sea Level Observing System GE XI

Linear mean sea level (MSL) trends and 95% confidence intervals (in mm/yr)								
Source of	Source of data: PSMSL and NOAA; Analysis: NOAA							
Boston, USA 1921 2006 86 2.63 0.18								
Portland, USA	1912	2006	95	1.82	0.17			
Eastport, USA	1929	2006	78	2.00	0.21			
Saint John, Canada	1914	1999	86	2.75	0.33			
Halifax, Canada	1895	2002	108	3.16	0.15			
Pointe-Au-Pere, Canada	1900	1983	84	-0.36	0.40			
Quebec, Canada	1910	2006	97	-0.17	0.49			
Neuville, Canada	Neuville, Canada 1914 2006 93 0.17 0.79							
Argentine Islands, Antarctica	1958	2006	49	1.72	0.49			

A review of the PSMSL data available showed that a few of the GLOSS-LTT stations do not have enough data yet to obtain a reliable sea level trend. There are also a number of Scandinavian stations with long data sets that are no longer in operation; given the number of other stations in that region, these defunct stations were not analyzed. There are also a few river stations on the St. Lawrence River where sea level trends are not meaningful with respect to climate observations. The expanded global reference station network now consists of 159 stations, which means that a total of 97 stations have been added to the previous 62 climate reference stations.

University of Hawaii Sea Level Center

The University of Hawaii Sea Level Center website hosts a variety of products, in addition to providing access to raw sea level data. Products include: global sea level deviations, tide gauge-altimeter analysis (deviations and anomalies), upper ocean volume, current indices, and topography. <u>http://uhslc.soest.hawaii.edu/</u>

NOAA Laboratory for Satellite Altimetry

NOAA's Laboratory for Satellite Altimetry website includes resources and links to a variety of satellite altimeter products. Projects included on the site include: satellite altimeter sea level rise data, near real-time processed analysis, historical sea level, ERS altimetry data, information on Geosat, geophysics research, and sea floor topography. It also provides updates on new research, and provides access to partner agency websites. <u>http://ibis.grdl.noaa.gov/SAT/SAT.html</u>

IV. New Technology

A. GPS on Tide Gauges

For NGS Continuously Operating Reference System (CORS) reference bench marks (typically two) that are located within a 1.6 km leveling distance of a NOAA water level station, a direct leveling connection will made between the CORS reference bench marks and the tidal bench

Global Sea Level Observing System GE XI

marks in the water level station network every 5 years. The order and class of the leveling run between the CORS reference marks and tidal bench mark shall be the same as that of leveling run for the local level network.

Table 4. Long-term CO-OPS water level stations within 10 kilometers of National Geodetic Survey (NGS) CORS-GPS stations.

CO-OPS	GLOSS	PSMSL			
Station ID	Code	Code	Station Name	NGS CORS ID	Distance (km)
1612340	108 LTT	760031	Honolulu, HI	HNLC	0.0
1617760	287 LTT	760061	Hilo, HI	HILO	1.3
1770000	144 LTT	745001	Pago Pago	ASPA	5.8
1820000	111 LTT	720011	Kwajalein	KWJ1	1.0
2695540	221 LTT	950011	Bermuda	BRMU	0.7
8410140	LTT	960201	Eastport, ME	EPRT	0.8
8413320		960191	Bar Harbor, ME	BARH	1.4
8419870		960177	Seavey Island, ME	POR4	2.8
8452660	290 LTT	960131	Newport, RI	NPRI	0.5
8531680	LTT	960101	Sandy Hook, NJ	SHK5	0.5
8551910		960089	Reedy Point, DE	RED5	0.5
8571892		960073	Cambridge, MD	HNPT	5.7
8577330		960078	Solomons Island, MD	MDSI	0.2
8594900	LTT	960076	Washington, DC	USNO	6.4
8631044			Wachapreague, VA	VIMS	0.2
8637624		960072	Gloucester Point, VA	GLPT	0.2
8651370	219	960063	Duck, NC	DUCK	0.4
8665530	LTT	960041	Charleston, SC	SCHA	0.2
8723170		960001	Miami Beach, FL	AOML and MIA3	4.8
8724580	216 LTT	940071	Key West, FL	CHIN	0.4
8735180		940037	Dauphin Island, AL	MOB1	5.5
8761724		940021	Grand Isle, LA	GRIS	0.1
8771510			Galveston Pleas. Pier	TXGV	0.0
9410170	LTT	823081	San Diego, CA	PLO5	8.4
9435380	157	823016	South Beach, OR	NEWP	4.7
9443090	LTT	823001	Neah Bay, WA	NEAH	7.8
9447130	LTT	823011	Seattle, WA	SEAT	5.9
9455760		821013	Nikiski, AK	KEN1	2.8
9455920		821012	Anchorage, AK	TSEA	5.7
9457292		821011	Kodiak Island, AK	KODK	0.7

Note: LTT indicates that a station is part of the GLOSS subset of stations for long term trends.

NGS will also be installing new CORS-GPS receivers as close as possible to the water level stations at The Battery (LTT, PSMSL Code 960121) and Fort Pulaski (GLOSS Code 289 LTT, PSMSL Code 960031).

For a full list of distances between CORS and tide stations, see <u>http://www.ngs.noaa.gov/CORS/Tiga/tiga_link.html</u>.

General Goals for implementing GPS technology in the NWLP.

U.S. National Report

GPS technology and procedures will be implemented in the operational plan:

- (1) to support the development of a seamless, geocentric reference system for the acquisition, management, and archiving of NOAA water level data. This will provide a national and global digital database, which will comply with the minimum geo-spatial metadata standards of the National Spatial Data Infrastructure (NSDI) and connect the NOAA water level database to the NGS National Spatial Reference System (NSRS);
- (2) to establish transformation functions between NOAA chart datum (MLLW) and the geocentric reference system to support NOAA 3-dimensional hydrographic surveys, the implementation of Electronic Chart Display and Information Systems (ECDIS), and the NOAA Vertical Datum transformation (V-Datum tool) and tidal datum models. Integration of GPS procedures into NOAAPORTS® operations will support the development of tidally-controlled Digital Elevation Maps and Models for use in programs such as marsh restoration.
- (3) to support water level datum transfers by using GPS derived orthometric heights.
- (4) to monitor crustal motions (horizontal and vertical) to support global climate change investigations.

GPS-derived orthometric heights can be accurately determined and used for water level datum transfers according to (a) the established guidelines for 3-D precise relative positioning to measure ellipsoid heights, (b) properly connecting to several NAVD88 bench marks, and ©) using the latest high-resolution modeled geoid heights for the area of interest. In many remote locations, the use of GPS-derived orthometric heights for datum transfer will be more efficient (timely) and more cost-effective than the use of conventional differential surveying techniques and may, under certain circumstances, preclude the installation of additional water level stations to establish a datum.

B. New Sensor Testing

Microwave Sensor Testing

An important objective of CO-OPS is to ensure that the most up-to-date water level products and services are provided to users. As measurement technology evolves and improved methods for

Global Sea Level Observing System GE XI

observing the environment are developed, CO-OPS selects newly developed sensors to bring into a monitoring setting. The CO-OPS Ocean System Test and Evaluation Program (OSTEP) involves a team of scientists and technicians dedicated to conducting rigorous testing of newly selected oceanographic and meteorological sensors and related systems, typically both in a laboratory and field setting. OSTEP analyzes test results to demonstrate operational capability, quantify accuracy, and assess the possibility of incorporating new sensors into NWLON stations. Pending successful test results the team also facilitates the transition of new sensors to an operational setting, which involves developing deployment guidelines, routine maintenance requirements, and data quality control procedures.

Over the past several years CO-OPS has been monitoring developments in microwave altimeter technology along with related testing currently being conducted throughout various international physical science communities. As a result, CO-OPS has recognized the many potential benefits of using microwave range sensors to collect long-term sea level measurements in various coastal regions. Such sensors offer the opportunity to overcome one of the largest disadvantages of currently-used water level sensors by avoiding contact with the harsh marine environment. Recently developed microwave range sensors can be deployed on structures in coastal areas, such as piers or pilings, in order to measure the ocean surface remotely, from above. As a result, many typical problems related to collecting long term sea level observations can be avoided, such as biological fouling, corrosion, and damage from vessel traffic. Easy access resulting from and out-of-the-water setup can also potentially simplify deployment and maintenance requirements.

CO-OPS recognizes that when introducing a new sensor technology into a pre-existing operational ocean observatory such as NWLON, it is critical to complete thorough testing in order to fully understand how the sensors will perform in the field over the wide range of environmental conditions experienced at various observatory locations. Over the past several months, OSTEP has been conducting a series of laboratory and field tests of four different types microwave range sensors in order to gain a better understanding of their performance capabilities and to determine whether or not such sensors are suitable for integration into NWLON stations. Sensor selection was based upon experience both within NOAA and outside organizations

OSTEP developed a microwave sensor test plan that was primarily based on the unique applications and stringent requirements of NWLON, however, information on other microwave sensor testing conducted to date throughout the sea level community was taken into account in an attempt to build off other's useful results, cover new ground by addressing questions that remain somewhat open, and to provide potentially valuable contributions to the international sea level community. Information on previous, similar microwave sensor testing was obtained through journal articles, various conference presentations, and personal communications with the individuals currently involved in tests.

NWLON stations are located in many different coastal areas throughout the United States and its territories, covering a variety of different environments. Testing needs to address how different

Global Sea Level Observing System GE XI

environmental parameters will impact the performance of these sensors. Sea level data collected at NWLON stations are used in multiple applications, all of which are very important to the public, including transmission of real-time data to enhance navigational safety, development of tidal prediction models, the coastal element of tsunami detection systems, and long term monitoring of sea level change to assess impacts of climate change. Water level data collected during the series of tests need to be used to determine the best way to process raw microwave range observations to derive sea level changes at the various temporal scales of interest.

Thorough analysis of incoming field data will be critical to prove with high confidence that sea level records measured by microwave range sensors meet CO-OPS accuracy requirements and to avoid introducing any systematic change in long term sea level records corresponding to the possible integration of these new sensors into GLOSS observatories. Since the series of tests will span more than a year, CO-OPS will compile results in a series of bi-annual interim reports that will be available for external distribution. The first report of the series was completed in March 2009, and results and status of this ongoing test effort were will be presented at the May 2009 GLOSS GE XI meeting in Paris.

The UHSLC sea level stations are currently utilizing radar gauges as a backup sensor. After appropriate time series are generated, the UHSLC plans to study the effectiveness of these sensors and comment on their use for the collection of long-term sea level data.

C. Hardening of NOAA Stations

By virtue of their location at the ocean's edge, water level observing stations are exposed to severe damage by the very storms which make their operation so important. Strengthening key NOAA NWLON stations ensures that observations of water level, wind speed and direction, barometric pressure, and air and water temperature will be available when the information is needed most. NOAA Sentinels are deployed in coastal areas most vulnerable to severe storms such as land-fall hurricanes in the US Gulf of Mexico. Sentinels have been established at four locations which were selected based on two objectives; re-establish NWLON stations either destroyed or heavily damaged by recent hurricanes; and established as funding becomes available.

NOAA Sentinels are large single-pile structures (see Figure 8). A single-pile structure presents a minimal profile to a storm coming from any direction. Engineering specifications based on Category 4 generated wind and wave action analysis determined that the platforms stand at least 25 feet above the sea surface on a 4-foot diameter single pile. The piles are driven 60-80 feet into the seafloor to ensure stability. The Sentinels are expected to enhance GLOSS objectives by ensuring continuous records during storm events and reducing the number of long data gaps due to storm damage. These stations will also improve the ability to record maximum water levels.

Global Sea Level Observing System GE XI

Figure 9. One of the US NOAA Sentinel Tide Stations in the Gulf of Mexico.

D. Arctic Bottom-Mounted Pressure Sensors

NOAA continues to operate and maintain an NWLON tide station at Prudhoe Bay Alaska which has now been in continuous operation on the North Slope since late 1993 and has been increasing the number of shorter seasonal deployments for updated shoreline surveys in the Chukchi Sea for the past few years.

NOAA has also been working to develop tide station configurations that will withstand the harsh winter environment. In August 2008, two bottom mounted offshore platforms were deployed beyond the bottom ice scouring about 3 km offshore in about 30 meters of water at Point Barrow, AK. Each platform houses an internally recording pressure measuring system outfitted with acoustic modems for a periodically uploading the data to the surface. The surface receiver would be either on a boat when there was open water, or a snow machine after boring a hole through the ice after solid freeze over (See Figure 10). The platforms are periodically referenced to benchmarks via staff shots and differential GPS. The platforms are each equipped with an acoustic release, and platform recovery is scheduled around August 2009. These offshore data once matched with on-shore data during the ice-free season will result in year-around sea level measurements at that location.

Global Sea Level Observing System GE XI

Figure 10. Schematic of Point Barrow Testing Configuration.

E. Deep-ocean Assessment and Reporting of Tsunamis (DART®)

The Deep-ocean Assessment and Reporting of Tsunamis (DART®) is an ongoing, multi-agency cooperative effort to maintain and improve the capability for the early detection and real-time reporting of tsunamis in the open ocean. The DART® network is an essential component in the provision of timely warnings to U.S. coastal communities (http://www.ndbc.noaa.gov/DART /DART.shtml). DART® stations are sited to provide *in situ* tsunami detection and water-level observations for NOAA's tsunami forecast, warning, and mitigation responsibilities. DART® data support the NOAA Tsunami Program observation requirements for Tsunami Offshore Real-Time and Post-event observations, as well as GLOSS, as described in NOAA's Consolidated Observational Requirements List (CORL). DART® became operational in 2003, but beginning in 2005, a transition was made to the DART II system, which has two way communication capabilities. The U.S. currently operates 39 DART® systems in the Atlantic and Pacific Oceans, the Caribbean Sea, and the Gulf of Mexico (See Figure 11).

Figure 11. Deep-ocean Assessment and Reporting of Tsunami (DART®) stations.

Each DART® system consists of an anchored seafloor Bottom Pressure Recorder (BPR) acoustically coupled to a moored surface buoy (See Figure 12). Iridium transceivers and the acoustic modems provide real-time communication between each DART® system and the NOAA Tsunami Warning Centers (TWC) in Ewa Beach, Hawaii and Palmer, Alaska. Additionally they provide limited communications from the TWC to the BPR.

Figure 12. Conceptual diagram of the DART® System.

Sources of potentially damaging tsunamis are widespread, as are the coastal communities they threaten. With a limited number of DART® systems available to deploy and maintain, it is vital that they be positioned to provide high quality observations at the earliest possible time. Siting of the DART® buoys involves addressing:

- optimization of site locations based on scientific considerations
- logistical needs of deployment
- modeling and detection requirements imposed by potential sources of tsunamis
- the identification of at-risk coastal communities

High frequency data consists of temperature and pressure averaged over 15-second intervals for the entire bottom package deployment period. Observations are stored on a flash card in the BPR until the bottom package is retrieved and the data recovered. NOAA processes the high frequency data then add the raw, edited, and processed data to NOAA's National Geophysical Data Center (NGDC) tsunami data archive along with all available metadata. In addition to internally recorded 15-second data, DART® systems report a combination of 15-second data and 1-minute averages when triggered to do so by the detection of an event. These data provide NOAA with deep ocean tsunami observations essential for evaluating the potential risk to coastal communities within their jurisdiction. In addition, each DART® system delivers spot pressure observations at 15-minute intervals in near real-time for system monitoring.

In addition to the real-time reporting operation modes and the two-way communication interrogation capability, each DART® BPR records 15-second data internally on a flash card for the entire BPR deployment period, to be analyzed retrospectively. These data are retrieved following scheduled bottom package recovery, typically 2 years after deployment.

NOAA edits the retrospective data, removing the pre-deployment and post-recovery signals and spikes using editing techniques to avoid altering the observations in any way. NOAA examines the record drift and time base stability and performs specific filtering and tidal signal removal for tsunami modeling activities. To convert pressure in psi to metric units, a constant, derived using Levitus climatology to estimate vertically average density, is applied to retrospective data in place of the constant applied to real-time transmissions (Eble et al., 1989). Quality control of the analyses are done by performing a predicted vs. observed residual analysis to check for discontinuities, datum shifts, and invalid data.

While DART® technology was primarily developed to support tsunami warning and modeling, this and similar bottom-mounted pressure sensors have the capacity to play a significant role in the calibration of global climate models.

V. Regional Activities

A. Support of Regional Tsunami Warning Systems

U.S. Tsunami Program

Although the frequency of damaging tsunamis in the U.S. is low compared to many other natural hazards, the impacts can be extremely high. In 2005, the National Science and Technology Council (NSTC) and the U.S. Sub-Committee for Disaster Reduction released a report outlining the U.S. President's strategy for reducing the tsunami risk (NSTC, 2005). The NSTC is the principal means for the President to coordinate science and technology policy across the U.S. Federal government. To support the national strategy for minimizing the impact of tsunami, NOAA relies on a network of global data, acquired and processed in real-time, in addition to high-quality global databases supporting advanced scientific modeling. NOAA has upgraded its sea level stations for near-shore monitoring, upgrading and expanding the network of seismic stations in partnership with the USGS, and expanding the Deep-ocean Assessment and Reporting of Tsunami (DART[®]) stations in the Atlantic, Caribbean, Gulf of Mexico and Pacific regions as part of the GEOSS. NOAA, in collaboration with the recently expanded National Tsunami Hazard Mitigation Program (NTHMP), is advancing modeling and mapping activities, hazard assessment and data stewardship, quantitative assessment of socio-economic impacts and increased preparedness.

New and Upgraded Tsunami Capable Tide Stations

Following the 2004 Indian Ocean tsunami disaster, the U.S. evaluated and strengthened its national tsunami warning system. NOAA is upgraded its existing National Water Level Observation Network (NWLON) tide stations with new Data Collection Platforms (DCPs) and communication technology, and fill gaps in the existing water level network with new tsunamicapable NWLON tide stations. NOAA's Tsunami Warning Centers also receive sea level data (1-minute averages transmitted every 5 minutes) from GLOSS stations operated by the University of Hawaii Sea Level Center (UHSLC). These tide stations, in addition to international tide stations in multiple countries, comprise an integrated coastal water level observation network, critical for tsunami detection and warning.

From 2005-2007, NOAA installed of16 new NWLON stations and 33 NWLON station upgrades, in support of the U.S. Tsunami Program. In addition to these priority locations, NOAA has been systematically upgrading NWLON stations along all U.S. Coasts, including its possessions and territories. There are currently 142 NWLON stations operating with full tsunami capabilities.

NWLON stations configured to support tsunami collect 1-minute averaged water level values in addition to the standard 6-minute averaged values. Unlike the previous generation of DCPs which transmitted 6-minute average water level values hourly via Geostationary Operational Environmental Satellites (GOES), the new DCPs transmit water level data every 6 minutes. 6-minute GOES transmissions include primary and backup 6-minute averaged water level data, as well as 1-minute water level data. The messages also include data quality parameters (mean,

Global Sea Level Observing System GE XI

standard deviation and outliers) and data from any meteorological sensors operating at the station, as well as the preceding water level values from the primary and redundant sensors which can be used to fill data gaps should a transmission be missed. Upgraded NWLON stations also collect 15-second data from the backup water level sensor, which are stored at the backup DCP on a flash memory card. 15-second data are not transmitted via GOES, or routinely archived, but are available for post-event analysis and modeling through the DCP's 56K modem or direct serial connection at the DCP. Enhancements are also under development, in order to increase two-way communication capabilities at tsunami stations for diagnostics, firmware upgrades, reconfiguration, trouble shooting, and data retrieval, thereby eliminating the need to travel to the site, and promoting quicker response to problems and outages.

IOC Tsunami Warning Systems

The IOC of UNESCO has successfully coordinated the Pacific Tsunami Warning System since 1965. After the 2004 Sumatra tsunami, IOC was mandated to assist Indian Ocean Member States in development of an Indian Ocean Tsunami Warning System. The effort began at the same time to develop Early Warning Systems for tsunami and other coastal hazards in both the Caribbean (CARIBE-EWS) and the Mediterranean and Northeast Atlantic Ocean (NEAMTWS). These TWSs, owned and operated by the Member States, collect, analyze, and disseminate seismic and sea level data in support of warning and preparedness. The U.S. has played an active role in the PTWS, IOTWS, and the CARIBE-EWS, both through collection of observations and providing tsunami warnings, and through provision of technical expertise.

Sustainable Sea Level Observations

In support of the CARIBE-EWS, the U.S. through NOAA's National Ocean Service, plans to install a new, sustainable sea level station in the wider Caribbean region by 2010. Site selection was focused on providing maximum benefit to the region through enhanced warning products, and was founded on scientifically-assessed vulnerability. The primary candidate for the location of this tide station is Barbuda, in the country of Antigua and Barbuda. A site reconnaissance in 2009 will confirm the suitability of the site to sustaining a hardened sea level station for the foreseeable future.

Puerto Rico Seismic Network of the University of Puerto Rico at Mayaguez

The Puerto Rico Seismic Network (PRSN) of the University of Puerto Rico at Mayagüez (UPRM) operates 6 sea level stations in Puerto Rico. The 6 tide gauge stations are NOS compliant and were funded by FEMA and the UPRM and installed and with the support and guidance of NOS/NOAA between 2006 and 2008 (Table 5). All of these stations also meet GLOSS standards for sea level observations and are currently providing data to appropriate warning centers and weather service offices. The data are transmitted every 6 minutes on GOES. The data can be accessed on the home page of the PRSN, <u>http://redsismica.uprm.edu</u>, Tides and Currents site of NOAA, <u>http://tidesandcurrents.noaa.gov</u> and Tides on Line site of NOAA

U.S. National Report	
http://tidesonline.nos.noaa.gov/moni	tor.html.

Station	State	GOES ID	Transmission Interval	Station Number	Lat	Long
ARECIBO	PR	3366454E	6 min	975-7809	18.48 N	66.70 W
FAJARDO	PR	3366C35A	6 min	975-3216	18.33 N	65.63 W
MAYAGUEZ	PR	336633DE	6 min	975-9394	18.22 N	67.16 W
VIEQUES	PR	3366D02C	6 min	975-2619	18.15 N	65.44 W
PENUELAS	PR	3366A6BC	6 min	975-B053	17.97 N	66.76 W
YABUCOA	PR	3366B5CA	6 min	975-422B	18.05 N	65.83 W

Table 5. PRSN Sea Level Stations in Puerto Rico, USA.

Each station is equipped with an acoustic and pressure sensor, 2 DCP's, air and water temperature sensors. All stations also have a meteorology package consisting of a wind, air temperature/relative humidity, barometric and rain gauges. The power of the station is autonomous and runs off solar panels. Timing is provided with a GPS. For leveling purposes, each sea level station has 5 benchmarks which have all been observed with GPS. Second-order, class I levels were used in connections at all the stations.

A GOES receiver and central recording system is operational at the Puerto Rico Seismic Network to receive the data from these and 13 other sea level stations operated by NOAA and other sea level operators in the Caribbean and Adjacent regions. These stations are monitored 24/7 as part of the PRSN Earthquake and Tsunami Information and Warning System. XCONNECT software of Sutron is used for display and quality control of the data. The West Coast and Alaska Tsunami Warning Center software, Tide View, is used to mesh observed tsunami information with the forecast model and compare observed waves with predicted tide and estimated tsunami arrival times, as well as digitally filter the tsunami signal.

The PRSN also supports efforts to improve sea level observations in the Caribbean for tsunami and other coastal hazards. In 2008 it hosted the IOC-GLOSS-PRSN Caribbean Training Course for Operators of Sea Level Stations. In 2008 it also installed a NOAA/NOS and GLOSS compliant station in the Dominican Republic and provided the support for the installation of a similar station in Road Town, Tortola, British Virgin Islands. It maintains an inventory of sea level stations in the Caribbean and Adjacent regions for the UNESCO Intergovernmental Coordination Group for Tsunami and other Coastal Hazards Warning System for the Caribbean and Adjacent Regions.

B. Climate Change Science Program

The U.S. Climate Change Science Program (CCSP) was launched in February 2002 as a collaborative federal interagency program, under a new cabinet-level organization designed to

Global Sea Level Observing System GE XI

improve the government-wide management and dissemination of climate change science and related technology development. The mission of the CCSP is to "facilitate the creation and application of knowledge of the Earth's global environment through research, observations, decision support, and communication". Twenty-one (21) synthesis and assessment products (SAPs) were identified in the 2003*Strategic Plan for the U.S. Climate Change Science Program*, written to help achieve this mission. SAP (4.1), for which NOAA was one of the lead Agencies responsible for production of the report, is *Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region*. The SAPs are intended to support informed discussion and decisions by policymakers, resource managers, stakeholders, the media, and the general public. The products help meet the requirements of the Global Change Research Act of 1990, which directs agencies to "produce information readily usable by policymakers attempting to formulate effective strategies for preventing, mitigating, and adapting to the effects of global change" and to undertake periodic scientific assessments. One of the major goals within the mission is to understand the sensitivity and adaptability of different natural and managed ecosystems and human systems to climate and related global changes.

SAP (4.1), *Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region*, addresses this goal by providing a detailed assessment of the effects of sea-level rise on coastal environments and presenting some of the challenges that need to be addressed in order to adapt to sea-level rise while protecting environmental resources and sustaining economic growth. It is intended to provide the most current knowledge regarding the implications of rising sea level and possible adaptive responses, particularly in the mid-Atlantic region of the United States. The focus of this Product is to identify and review the potential impacts of future sea-level rise based on present scientific understanding. To do so, this Product evaluates several aspects of sea-level rise impacts to the natural environment and examines the impact to human land development along the coast. In addition, the Product addresses the connection between sea-level rise impacts and current adaptation strategies, and assesses the role of the existing coastal management policies in identifying and responding to potential challenges.

Another CCSP SAP that addresses impacts of sea-level rise is SAP 4.7 *Impacts of Climate Change and variability on Transportation Systems and Infrastructure: Gulf Coast Study.* This report includes specific discussion of impacts of sea level rise on the human built environment was well as other climate variables.

See http://www.climatescience.gov/.

C. Contributions to an Arctic Observing System

NOAA has recently completed a draft action plan for the Arctic to specifically address climate change impacts. The study has found that a top priority requirement of virtually all stakeholders is a better understanding of what the future holds in terms of climate forecasts, sea ice and sea level projections. This information underpins decision-making in all sectors. Alaska's state government, for example, is at the forefront of calls to action on addressing and mitigating

Global Sea Level Observing System GE XI

impacts of climate change. The State of Alaska, academia, US Federal agencies with Alaskan and Arctic responsibilities (such as the Department of Interior, the U.S. Army Corps of Engineers and U.S. Coast Guard), industry, international partners and other users, have expressed concern that current NOAA and other available climate data are at too global a scale to guide Arctic management decisions. Higher resolution regional models are needed for guidance on climate change at scales important for planning, mitigating and adapting. Furthermore, the observed rate of warming and loss of sea ice over the past decade exceed all model projections, highlighting the need for improved global and regional models of climate change, sea ice loss and sea level rise.

Specifically to support the objectives of the action plan, the US should "Deliver the Fundamental Geospatial Framework supporting marine transportation, coastal community resilience, climate monitoring and assessments, sea level rise and storm surge levels, and many other uses by:

- Establishing an accurate vertical reference system for the region by collecting gravity data via airborne sensors for Alaska and the Arctic to efficiently allow Global Positioning System measurements to an accuracy of approximately 2cm
- Exploring potential cost-saving alternatives with partners such as USGS, the Naval Research Laboratory, and the state of Alaska for either direct funding to defray some of the cost and/or providing flight hours, equipment, and other types of in-kind support.
- Establishing Continuously Operating GPS Reference Stations (CORS) in Alaska for costeffective, efficient and easy access to precise positioning; and co-locate tide stations with CORS to enable measurement and monitoring of sea level change
- Continuing development of new technology and procedures to acquire long term measurements of water level data in remote regions currently not possible with existing capabilities
- Siting 29 new National Water Level Observation Network stations per implementation plan to address gaps in water level data in the State of Alaska
- Updating tidal current predictions through tidal current surveys and short term observations

VI. APPENDIX 1: Status of NOAA/CO-OPS GLOSS Stations in the United States

GLOSS ID	Location	Status
111	Kwajelein	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (055A) data through 2005 CRN station
206	San Juan, PR	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (245A) data through 2005
221	Bermuda	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (259A) data through 2005 CRN station
302	Adak, AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (040A) data through 2005
149	Apra Harbor, Guam	 Ongoing, station being rebuilt after a typhoon, currently using a digital/pressure bubbler gauge – redundant DCP to be installed PSMSL data through 2007 JASL (053A) data through 2005 CRN station
219	Duck Pier, NC	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (260A) data through 2005
289	Fort Pulaski, GA	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (752A) data through 2005
217	Galveston Pier 21, TX	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JAS L(775A) data through 2005
287	Hilo, HI	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (060A) data through 2005
108	Honolulu. HI	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (057B) data through 2005 CRN station
109	Johnston Island	No longer operated by NOAA – can no longer travel to the island

GLOSS ID	Location	
		Status
		PSMSL data through 2007
		• JASL (052A) data through 2005
216	Key West, FL	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (242A) data through 2005 CRN station
159	La Jolla, CA	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (569A) data through 2005 CRN station
303	Attu Island, AK	 No longer operated by NOAA – station may be re-established using Tsunami funding in 2006 PSMSL data through 1966 JASL (550A) data through 1966
218	Miami (Haulover Pier)	 Destroyed in 1992 by hurricane – moved to Virginia Key, FL Ongoing, currently using an acoustic gauge with pressure gauge backup – station is not connected to datum at Miami so a new PSMSL station is needed. JASL Miami data through 1992 JASL (755A) Virginia Key data 1996 through 2005
106	Midway Island	 Ongoing, currently using an acoustic gauge with pressure gauge backup – redundant DCP to be installed in 2006. PSMSL data through 2007 JASL (050A) data through 2005
290	Newport, RI	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (253A) data through 2005
74	Nome, AK	 Ongoing, currently using a dual orifice digital/bubbler system PSMSL data through 2007 JASL (0595A) data through 2001
144	Pago Pago	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (056A) data through 2005
288	Pensacola, FL	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (762A) data through 2005 CRN station
151	Prudhoe Bay, AK	 Ongoing, currently using an acoustic gauge during the ice – free season and a digital/bubbler system during the winter PSMSL data through 2007 JASL (579A) data through 2005
158	San Francisco, CA	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (551A) data through 2005

GLOSS ID	Location	
		Status
_		CRN station
100	Sand Point, AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (574A) data through 2001
150	Seward, AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (560C) data through 2005
154	Sitka, AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (559A) data through 2005
157	South Beach, OR	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (592A) data through 2005
102	Unalaska, AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (041B) data through 2005
220	Atlantic City, NJ	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (264A) data through 2005 CRN station
105	Wake Island	 Ongoing, currently using a acoustic gauge with pressure gauge backup PSMSL data through 2007 JASL (051A) data through 2005

VII. APPENDIX 2: Status of additional operational non- GLOSS JASL NWLON Stations in the United States

JASL	Location	Status
ID		Status
039A	Kodiak, AK	• Ongoing, currently using a acoustic gauge with pressure gauge backup
		• JASL data through 2005
058A	Nawiliwili, HI	• Ongoing, currently using a acoustic gauge with pressure gauge backup
		JASL data through 2005
059A	Kahului, HI	 Ongoing, currently using a acoustic gauge with pressure gauge backup LASL data through 2005
0.61.4		• JASL data through 2005
061A	Mokuoloe, HI	Ongoing, currently using a acoustic gauge with pressure gauge backup LASL data through 2005
552.4		• JASL data through 2005
552A	Kawainae, Hi	Ongoing, currently using a acoustic gauge with pressure gauge backup LASL data through 2005
555 A	Mantana	• JASL data through 2005
333A	Monterey, CA	Ongoing, currently using a acoustic gauge with pressure gauge backup
		• JASL data through 2005
556A	Crescent City, CA	Ongoing, currently using a acoustic gauge with pressure gauge backup
		• JASL data through 2005
		CRN station
55/A	Port Orford, OR	Ongoing, currently using a acoustic gauge with pressure gauge backup
550.4		• JASL data through 2005
558A	Nean Bay, WA	Ongoing, currently using a acoustic gauge with pressure gauge backup
		• JASL data through 2005
F < 1 A		CRN station
561A	Seldovia, AK	Ongoing, currently using a acoustic gauge with pressure gauge backup
5624		• JASL data through 2005
562A	Valdez. AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup IASL data through 2005
5644	Willows Deer W/A	JASL data uliougli 2003
364A	willapa Bay, wA	Ongoing, currently using a acoustic gauge with pressure gauge backup
ECEA		• JASL data through 2005
565A	Port San Luis, CA	Ongoing, currently using a acoustic gauge with pressure gauge backup LASL data through 2005
5671	Los Angeles, CA	JASL data unough 2003 Ongoing summently using a second is summer with survey with second se
30/A	Los Aligeles, CA	 Ongoing, currently using a acoustic gauge with pressure gauge backup IASL data through 2001
570 4	Volutet AV	JASL data inrougn 2001
570A	i akutat, AK	Ongoing, currently using a acoustic gauge with pressure gauge backup

JASL	Location					
ID		Status				
		JASL data through 2005				
571A	Ketchikan, AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 CRN station 				
572A	Astoria, OR	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
573A	Arena Cove, CA	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
575A	Charleston, OR	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
576A	Humboldt Bay, CA	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
578A	Santa Monica, CA	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
583B	Cordova, AK	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
594A	Platform Harvest, CA	 Ongoing, currently two DCP's with paroscientific pressure digital bubbler sensors JASL data through 1999 				
246A	Magueyes Island, PR	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
261A	Charleston, SC	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 CRN station 				
240A	Fernandina Beach, FL	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 CRN station 				
252A	Portland, ME	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 CRN station 				
254A	Limetree bay, VI	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
255A	Charlotte Amalie, VI	 Ongoing, currently using a acoustic gauge with pressure gauge backup JASL data through 2005 				
279A	Montauk, NY	• Ongoing, currently using a acoustic gauge with pressure gauge				

JASL	Location	
ID		Status
		backup
		JASL data through 2005
740A	Eastport, ME	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
741 4	Poston MA	JASL data through 2005 Ongoing currently using a accustic gauge with pressure gauge
/41A	Boston, MA	Ongoing, currently using a acoustic gauge with pressure gauge hackup
		• JASL data through 2005
		CRN station
742A	Woods Hole. MA	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
		• JASL data through 2005
743A	Nantucket, MA	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
7444	Nue Les les CT	• JASL data through 2005
/44A	New London, CI	Ongoing, currently using a acoustic gauge with pressure gauge hockup
		• IASI data through 2005
745A	New York, NY	 Ongoing, currently using a acoustic gauge with pressure gauge.
,		backup
		• JASL data through 2005
		CRN station
746A	Cape May, NJ	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
		• JASL data through 2005
747A	Lewes, DE	• Ongoing, currently using a acoustic gauge with pressure gauge
		Dackup
7494	Chesaneake BBT_VA	Ongoing currently using a acoustic gauge with pressure gauge
	Chesapeake DD1, VA	• Ongoing, currentry using a acoustic gauge with pressure gauge
		• JASL data through 2005
750A	Wilmington, NC	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
		• JASL data through 2005
753A	Mayport, FL	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
757		• JASL data through 2005
75/A	Naples,FL	• Ongoing, currently using a acoustic gauge with pressure gauge
		• IASL data through 2005
759A	St Petersburg FL	Ongoing currently using a acoustic gauge with pressure gauge
13711	bt. Fotorsburg, FE	hackup
		• JASL data through 2005
760A	Appalachicola, FL	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
		• JASL data through 2005
761A	Panama City Beach, FL	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
762 4	Devention Internal AI	JASL data through 2005
703A	Daupinii Island, AL	• Ongoing, currently using a acoustic gauge with pressure gauge

JASL	Location	
ID		Status
		backup
		JASL data through 2005
765A	Grand Isle, LA	Ongoing, currently using a acoustic gauge with pressure gauge bodyperiods
		• IASL data through 2005
766 \	Sabina Pass TV	 JASE data diffougil 2003 Ongoing ourrontly using a accustic gauge with pressure gauge
700A	Sabille Fass, 1A	 Ongoing, currently using a acoustic gauge with pressure gauge backup
		• JASL data through 2005
767A	Galveston Pleasure Pier, TX	• Ongoing, currently using a acoustic gauge with pressure gauge
		Dackup LASL data through 2005
760 4	Dealmont TV	JASL data unough 2003 Ongoing ourrontly using a accustic gauge with processing gauge
709A	Rockport, 1A	Ongoing, currently using a acoustic gauge with pressure gauge backup
		• IASL data through 2005
770.4	Corpus Christi TV	ASE data difformed a societia gauge with pressure gauge
770A	Corpus Chirisu, 1X	Ongoing, currentry using a acoustic gauge with pressure gauge backup
		• IASI data through 1999
7724	Port Isabel TX	 Ongoing currently using a acoustic gauge with pressure gauge
11211		hackun
		• JASL data through 2005
773A	Clearwater Beach FL	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
		• JASL data through 2005
774A	Port Canaveral, FL	• Ongoing, currently using a acoustic gauge with pressure gauge
		backup
		• JASL data through 2005
	Hampton Roads, VA	CRN station for se level

VIII. APPENDIX 3: UHSLC Fast Delivery, JASL and Real-time datasets

The GLOSS/CLIVAR (formerly known as the WOCE) fast sea level data is distributed as hourly, daily, and monthly values. This project is supported by the NOAA Climate and Global Change program, and is one of the activities of the University of Hawaii Sea Level Center.

Joint Archive for Sea Level: Research Quality Data Set

The Joint Archive for Sea Level (JASL), a collaboration between the University of Hawaii Sea Level Center (UHSLC) and the World Data Center-A for Oceanography, the National Oceanographic Data Center (NODC), and the National Coastal Data Development Center (NCDDC), continues to acquire, quality control, manage, and distribute sea level data as initiated by the Tropical Ocean Global Atmosphere (TOGA) Program, which ended in 1994. The TOGA ocean monitoring networks were primarily in the tropics. Since the end of TOGA, the JASL has slowly begun to absorb sea level sites in oceanographically strategic locations beyond the tropics. The JASL is now an official Global Sea Level Observing System (GLOSS) data center. The JASL Research Quality Data Set (RQDS) is the largest global collection of quality-controlled hourly sea level. Efforts are underway to acquire new sites and uncover historic records as available.

The JASL receives hourly data from regional and national sea level networks. The data are inspected and obvious errors such as data spikes and time shifts are corrected. Gaps less than 25 hours are interpolated. Reference level problems are referred back to the originator. If the originators cannot resolve the reference level shift, comparisons with neighboring sites or examination of the hourly residuals may warrant an adjustment. Descriptive station information and quality assessments are prepared. The objective is to assemble a scientifically valid, well-documented archive of hourly, daily, and monthly sea level values in standardized formats. These data are annually submitted to the World Data Center-A for Oceanography (WDCA) and the monthly values are provided to the Permanent Service for Mean Sea Level.

General Information for Desired Stations as of January 31, 2007:

Notes on columns: Pxxx: Pacific Ocean, Axxx: Atlantic Ocean, Ixxx: Indian Ocean CI: Completeness index or percentage of data span without missing data. QC-YEARS: years which have received quality control.

JASL	TOGA	GLOSS	_STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
001A	Рххх	115	Pohnpei-A	Fd St Micronesia	06-59N	158-14E	1969-1971	100	Scripps Inst. Ocean.
001B	Рххх	115	Pohnpei-B	Fd St Micronesia	06-59N	158-15E	1974-2004	98	UH Sea Level Center
002A	Рххх	113	Tarawa-A,Betio	Rep. of Kiribati	01-22N	172-56E	1974-1983	78	UH Sea Level Center
002B	Рххх	113	Tarawa-B,Bairiki	Rep. of Kiribati	01-20N	173-01E	1983-1988	98	UH Sea Level Center
002C	Рххх	113	Tarawa-C,Betio	Rep. of Kiribati	01-22N	172-56E	1988-1997	100	UH Sea Level Center

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
002D	Рххх	113	Tarawa-D,Betio	Rep. of Kiribati	01-22N	172-56E	1992-2004	91	Nat. Tidal Ctr., BOM
003A	Рххх	169	Baltra-A	Ecuador	00-26S	090-17W	1968-1977	93	National Ocean Service
003B	Рххх	169	Baltra-B	Ecuador	00-26S	090-17W	1985-2005	86	UH Sea Level Center
004A	Рххх	114	Nauru-A	Rep. of Nauru	00-32S	166-54E	1974-1995	95	UH Sea Level Center
004B	Рххх	114	Nauru-B	Rep. of Nauru	00-32S	166-55E	1993-2004	88	Nat. Tidal Ctr., BOM
005A	Рххх	112	Majuro-A	Rep. Marshall I.	07-06N	171-22E	1968-1999	92	UH Sea Level Center
005B	Рххх	112	Majuro-B	Rep. Marshall I.	07-07N	171-22E	1993-2004	97	Nat. Tidal Ctr., BOM
006A	Рххх	ххх	Enewetok-A	Rep. Marshall I.	11-26N	162-23E	1951-1971	98	Scripps Inst. Ocean.
006B	Рххх	ххх	Enewetok-B	Rep. Marshall I.	11-26N	162-23E	1974-1979	94	UH Sea Level Center
007A	Рххх	120	Malakal-A	Rep. of Belau	07-20N	134-29E	1926-1939	92	Japan Ocean. Data Cen.
007B	Рххх	120	Malakal-B	Rep. of Belau	07-20N	134-28E	1969-2003	95	UH Sea Level Center
008A	Рххх	119	Yap-A	Fd St Micronesia	09-31N	138-08E	1951-1952	100	Scripps Inst. Ocean.
008B	Рххх	119	Yap-B	Fd St Micronesia	09-31N	138-08E	1969-2004	92	UH Sea Level Center
009A	Рххх	66	Honiara-A	Solomon Islands	09-26S	159-57E	1974-1995	98	UH Sea Level Center
009B	Рххх	66	Honiara-B	Solomon Islands	09-25S	159-57E	1994-2004	97	Nat. Tidal Ctr., BOM
010A	Рххх	65	Rabaul	Papua New Guinea	04-12S	152-11E	1966-1997	85	UH Sea Level Center
011A	Рххх	146	Christmas-A	Rep. of Kiribati	01-59N	157-29W	1955-1972	89	Scripps Inst. Ocean.
011B	Рххх	146	Christmas-B	Rep. of Kiribati	01-59N	157-28W	1974-2003	96	UH Sea Level Center
012A	Рххх	ХХХ	Fanning-A	Rep. of Kiribati	03-54N	159-23W	1957-1958	88	Scripps Inst. Ocean.
012B	Рххх	ХХХ	Fanning-B	Rep. of Kiribati	03-54N	159-23W	1972-1987	95	UH Sea Level Center
012C	Рххх	ХХХ	Fanning-C	Rep. of Kiribati	03-51N	159-22W	1988-1990	78	UH Sea Level Center
013A	Рххх	145	Kanton-A	Rep. of Kiribati	02-49S	171-43W	1949-1967	99	Scripps Inst. Ocean.
013B	Рххх	145	Kanton-B	Rep. of Kiribati	02-49S	171-43W	1972-2001	93	UH Sea Level Center
014A	Рххх	107	French Frigate S	USA	23-52N	166-17W	1974-2001	97	UH Sea Level Center
015A	Рххх	140	Papeete-A	French Polynesia	17-32S	149-34W	1969-1975	91	UH Sea Level Center
015B	Рххх	140	Papeete-B	French Polynesia	17-32S	149-34W	1975-2002	98	National Ocean Service
016A	Рххх	138	Rikitea	French Polynesia	23-08S	134-57W	1969-2003	91	UH Sea Level Center
017A	Рххх	ХХХ	Hiva Oa	French Polynesia	09-49S	139-02W	1977-1980	75	UH Sea Level Center
018A	Рххх	122	Suva-A	Fiji	18-08S	178-26E	1972-1997	91	National Ocean Service
018B	Рххх	122	Suva-B	Fiji	18-08S	178-26E	1998-2004	99	Nat. Tidal Ctr., BOM
019A	Рххх	123	Noumea	France	22-18S	166-26E	1967-2003	99	UH Sea Level Center
021A	Рххх	176	Juan Fernandez-A	Chile	33-37S	078-50W	1977-1984	67	UH Sea Level Center
021B	Рххх	176	Juan Fernandez-B	Chile	33-37S	078-50W	1985-2002	89	SHOA
022A	Рххх	137	Easter-A	Chile	27-09S	109-27W	1957-1958	97	SHOA
022B	Рххх	137	Easter-B	Chile	27-09S	109-27W	1962-1963	100	SHOA
022C	Рххх	137	Easter-C	Chile	27-09S	109-27W	1970-2002	83	SHOA
023A	Рххх	139	Rarotonga-A	Cook Islands	21-12S	159-47W	1977-1997	98	UH Sea Level Center
023B	Рххх	139	Rarotonga-B	Cook Islands	21-12S	159-47W	1993-2004	99	Nat. Tidal Ctr., BOM
024A	Рххх	143	Penrhyn	Cook Islands	08-59S	158-03W	1977-2003	95	UH Sea Level Center
025A	Рххх	121	Funafuti-A	Tuvalu	08-32S	179-12E	1977-1999	97	UH Sea Level Center
025B	Рххх	121	Funafuti-B	Tuvalu	08-30S	179-13E	1993-2004	96	Nat. Tidal Ctr., BOM
026A	Рххх	ХХХ	Honolulu,Kewalo	USA	21-18N	157-52W	1978-1986	96	UH Sea Level Center
027A	Рххх	ХХХ	Honolulu,Pier 45	USA	21-19N	157-53W	1985-1988	100	UH Sea Level Center
028A	Рххх	118	Saipan-A	N. Mariana Is.	15-13N	145-44E	1938-1940	97	Japan Ocean. Data Cen.
028B	Рххх	118	Saipan-B	N. Mariana Is.	15-14N	145-45E	1978-2003	93	UH Sea Level Center
029A	Рххх	117	Kapingamarangi	Fd St Micronesia	01-06N	154-47E	1978-2003	93	UH Sea Level Center
030A	Рххх	ХХХ	Santa Cruz	Ecuador	00-45S	090-19W	1978-2004	95	UH Sea Level Center

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
031A	Рххх	142	Nuku Hiva	French Polynesia	08-56S	140-05W	1982-1997	70	UH Sea Level Center
033A	Рххх	69	Bitung	Indonesia	01-26N	125-12E	1986-2001	43	BAKOSURTANAL
034A	Рххх	161	Cabo San Lucas	Mexico	22-53N	109-55W	1973-2003	81	CICESE
035A	Рххх	177	San Felix	Chile	26-17S	080-08W	1987-2002	79	SHOA
036A	Рххх	160	Guadalupe	Mexico	28-53N	118-18W	1977-1985	75	CICESE
038A	Рххх	ххх	Nuku'alofa	Tonga	21-08S	175-11W	1990-2004	97	Nat. Tidal Ctr., BOM
039A	Рххх	ххх	Kodiak,Alaska	USA	57-44N	152-31W	1975-2005	83	National Ocean Service
040A	Рххх	302	Adak,Alaska	USA	51-52N	176-38W	1950-2005	91	National Ocean Service
041A	Рххх	102	Dutch Harbor-A,AK	USA	53-53N	166-32W	1950-1955	100	National Ocean Service
041B	Рххх	102	Dutch Harbor-B,AK	USA	53-53N	166-32W	1982-2005	96	National Ocean Service
043A	Рххх	ХХХ	Palmyra	USA Trust	05-53N	162-05W	1947-1949	95	National Ocean Service
046A	Рххх	917	Port Vila-A	Vanuatu	17-44S	168-19E	1977-1982	87	unconfirmed
046B	Рххх	917	Port Vila-B	Vanuatu	17-46S	168-18E	1993-2004	92	Nat. Tidal Ctr., BOM
047A	Рххх	103	Chichijima	Japan	27-06N	142-11E	1975-2003	99	Japan Meteor. Agency
048A	Рххх	ХХХ	Anewa Bay	Papua New Guinea	06-11S	155-53E	1968-1977	84	UH Sea Level Center
049A	Рххх	104	Minamitorishima	Japan	24-18N	153-59E	1997-2003	91	Japan Meteor. Agency
050A	Рххх	106	Midway	USA Trust	28-13N	177-22W	1947-2004	93	National Ocean Service
051A	Рххх	105	Wake	USA Trust	19-17N	166-37E	1950-2004	93	National Ocean Service
052A	Рххх	109	Johnston	USA Trust	16-44N	169-32W	1947-2003	94	National Ocean Service
053A	Рххх	149	Guam	USA Trust	13-26N	144-39E	1948-2005	92	National Ocean Service
054A	Рххх	116	Truk	Fd St Micronesia	07-27N	151-51E	1963-1991	89	National Ocean Service
055A	Рххх	111	Kwajalein	Rep. Marshall I.	08-44N	167-44E	1946-2005	98	National Ocean Service
056A	Рххх	144	Pago Pago	USA Trust	14-17S	170-41W	1948-2005	95	National Ocean Service
057A	Рххх	108	Honolulu-A	USA	21-18N	157-52W	1877-1892	32	National Ocean Service
057B	Рххх	108	Honolulu-B	USA	21-18N	157-52W	1905-2005	98	National Ocean Service
058A	Рххх	ххх	Nawiliwili	USA	21-58N	159-21W	1954-2005	99	National Ocean Service
059A	Рххх	ххх	Kahului	USA	20-54N	156-28W	1950-2005	92	National Ocean Service
060A	Рххх	287	Hilo	USA	19-44N	155-04W	1927-2005	81	National Ocean Service
061A	Рххх	ХХХ	Mokuoloe	USA	21-26N	157-48W	1957-2005	79	National Ocean Service
062A	Рххх	124	Norfolk Island-A	Australia	29-04S	167-57E	1985-1986	98	CSIRO
062B	Рххх	124	Norfolk Island-B	Australia	29-04S	167-56E	1994-1999	100	CSIRO
063A	Рххх	ХХХ	Wewak	Papua New Guinea	03-34S	143-38E	1984-1994	82	CSIRO
064A	Рххх	ХХХ	Port Moresby	Papua New Guinea	09-29S	147-08E	1984-1993	98	CSIRO
065A	Рххх	ХХХ	Manus	Papua New Guinea	02-01S	147-16E	1984-1994	73	CSIRO
066A	Рххх	ХХХ	Madang	Papua New Guinea	05-12S	145-48E	1984-1998	81	CSIRO
067A	Рххх	ххх	Lae	Papua New Guinea	06-44S	146-59E	1984-1997	83	CSIRO
068A	Рххх	ххх	Kavieng	Papua New Guinea	02-35S	150-48E	1984-1994	95	CSIRO
069A	Рххх	63	Alotau	Papua New Guinea	10-10S	150-27E	1984-1995	62	CSIRO
070A	Рххх	127	Auckland	New Zealand	36-51S	174-46E	1984-1988	100	Royal New Zealand Navy
071A	Рххх	101	Wellington	New Zealand	41-17S	174-47E	1944-2005	97	Royal New Zealand Navy
072A	Рххх	129	Bluff	New Zealand	46-36S	168-21E	1984-2005	51	Royal New Zealand Navy
073A	Рххх	ххх	Tauranga	New Zealand	37-39S	176-11E	1984-2005	84	Royal New Zealand Navy
074A	Рххх	ХХХ	Westport	New Zealand	41-44S	171-36E	1984-1985	100	Royal New Zealand Navy
075A	Рххх	XXX	Wanganui	New Zealand	39-57S	174-59E	1984-1985	97	Royal New Zealand Navy
076A	Рххх	XXX	Taranaki	New Zealand	39-03S	174-02E	1984-1985	79	Royal New Zealand Navy
077A	Рххх	XXX	Port Nelson	New Zealand	41-16S	173-16E	1984-1985	97	Royal New Zealand Navy
078A	Рххх	ХХХ	Gisborne	New Zealand	38-41S	178-02E	1984-1985	98	Royal New Zealand Navy

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
079A	Рххх	128	Chatham	New Zealand	43-57S	176-34W	2001-2003	38	UH Sea Level Center
080A	Рххх	174	Antofagasta	Chile	23-39S	070-24W	1945-2002	93	SHOA
081A	Рххх	175	Valparaiso	Chile	33-02S	071-38W	1944-2002	84	SHOA
082A	Рххх	182	Acajutla	El Salvador	13-35N	089-50W	1971-2001	87	Inst. Geograf. Nacional
083A	Рххх	ххх	Arica	Chile	18-28S	070-20W	1982-1998	98	SHOA
084A	Рххх	ххх	Lobos de Afuera	Peru	06-56S	080-43W	1982-2003	97	DHNM
085A	Рххх	170	Buenaventura	Colombia	03-54N	077-06W	1953-2000	92	IDEAM
086A	Рххх	ХХХ	La Union	El Salvador	13-20N	087-49W	1954-1980	77	National Ocean Service
087A	Рххх	167	Quepos	Costa Rica	09-24N	084-10W	1961-1994	83	SERMAR
088A	Рххх	ХХХ	Caldera	Chile	27-04S	070-50W	1980-1998	97	SHOA
089A	Рххх	ххх	Manta	Ecuador	00-57S	080-44W	1979-1981	100	INOCAR
090A	Рххх	162	Socorro	Mexico	18-44N	111-01W	1957-1959	81	CICESE
091A	Рххх	172	La Libertad	Ecuador	02-12S	080-55W	1949-2003	97	INOCAR
092A	Рххх	ХХХ	Talara-A	Peru	04-35S	081-17W	1950-1965	92	National Ocean Service
092B	Рххх	ХХХ	Talara-B	Peru	04-35S	081-17W	1988-2002	74	DHNM
093A	Рххх	173	Callao-A	Peru	12-03S	077-09W	1950-1965	97	National Ocean Service
093B	Рххх	173	Callao-B	Peru	12-03S	077-09W	1970-2003	99	DHNM
094A	Рххх	ХХХ	Matarani-A	Peru	17-00S	072-07W	1954-1964	98	National Ocean Service
094B	Рххх	ХХХ	Matarani-B	Peru	17-00S	072-07W	1992-2002	81	DHNM
096A	Рххх	XXX	San Juan	Peru	15-22S	075-12W	1978-2002	80	DHNM
300A	Рххх	XXX	Naos-A	Panama	08-55N	079-32W	1961-1965	99	Scripps Inst. Ocean.
300B	Рххх	XXX	Naos-B	Panama	08-55N	079-32W	1991-1997	84	National Ocean Service
301A	Рххх	ХХХ	Puerto Quetzal-A	Guatemala	13-55N	090-47W	1983-1984	90	UH Sea Level Center
301B	Рххх	ХХХ	Puerto Quetzal-B	Guatemala	13-55N	090-47W	1992-1995	77	UH Sea Level Center
2024	D	1/0	Dellere	Davaara	00 501	070 0404	1007 1007	00	Panama Canal
302A	PXXX	108	Balboa	Panama	08-58N	079-34W	1907-1997	98	
303A	PXXX	1/1			01-50N	078-44W	1951-2000	86	IDEAM
304A	PXXX	XXX	Pto. Armuelles-A	Panama	00-16N	082-52W	1955-1968	95	Inst. Geograf. Nac.
304B	PXXX	XXX	Pto. Armuelles-B	Panama	08-16N	082-52W	1983-2001	94	Inst. Geograf. Nac.
305A	PXXX	XXX	Cedros Island	Mexico	28-06N	115-11W	1976-1989	75	
307A	PXXX	XXX	San Felipe	Mexico	31-01N	114-49W	1982-1986	52	
308A	PXXX	XXX		Mexico	30-29N	112-22/0	1977-1990	97	CICESE
310A	PXXX	XXX	Bania Los Angeles		28-58N	110.001	1973-1994	74	CICESE
313A	PXXX	XXX	Catalina-A	USA	33-27N	110-29W	1978-1979	96	Scripps Inst. Ocean.
313B	PXXX	XXX		USA	33-27N	118-29W	1980-1988	80	Scripps inst. Ocean.
310A	PXXX	207	Acapulco-A,Gro.	Mexico	10-50N	000 55W	1952-1995	91	UNAIVI Coorotorio de Marine
316B	PXXX	267	Acapulco-B,Gro.	Mexico	10-50IN	099-55W	1999-2005	88	Secretaria de Marina
31/A	PXXX	XXX	Elisellaua	Mexico	31-51N	110-38W	1950-1991	84	UNAW
318A	PXXX	XXX	Puerto Madero	Mexico	14-43N	092-26W	1986-1988	99	
319A	PXXX	XXX 202	Lorelo		20-01N	102.11F	1975-1988	/3	CICESE Death Currier Managina
320A	PXXX	293		Malaysia	05-16N	103-11E	1984-2005	99	Dept. Survey/Mapping
321A	PXXX	XXX	Jonor Banaru	Malaysia	01-28N	103-48E	1983-2005	95	Dept. Survey/Mapping
322A	PXXX	XXX	Tiaman	Malaysia	03-591	103-26E	1983-2005	98 07	Dept. Survey/Warring
323A	PXXX	XXX		Malaysia	02-48IN	104-08E	1985-2005	9/	Dept. Survey/Wapping
324A	PXXX	XXX	Sealli	Malaysia	01-56N	104-07E	1980-2005	98	Dept. Survey/Wapping
325A	PXXX	XXX	Kukup	Malaysia	01-20N	103-2/E	1985-2005	97	Dept. Survey/Wapping
326A	PXXX	XXX	Geting	Malaysia	06-14N	102-06E	1986-2004	99	Dept. Survey/Mapping

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
327A	Рххх	44	Keppel Harbour	Singapore	01-16N	103-49E	1981-1990	99	Port Singapore Auth.
328A	Рххх	39	Ko Lak	Thailand	11-48N	099-49E	1985-2005	95	Naval Hydro. Dept.
329A	Рххх	77	Hong Kong-A	China	22-18N	114-12E	1962-1985	97	Hong Kong Observatory
329B	Рххх	77	Hong Kong-B	China	22-18N	114-13E	1986-2006	99	Hong Kong Observatory
331A	Рххх	58	Brisbane	Australia	27-22S	153-10E	1984-2003	97	Nat. Tidal Ctr., BOM
332A	Рххх	59	Bundaberg	Australia	24-50S	152-21E	1984-2003	98	Nat. Tidal Ctr., BOM
333A	Рххх	57	Fort Denison	Australia	33-51S	151-14E	1965-2003	94	Nat. Tidal Ctr., BOM
334A	Рххх	60	Townsville	Australia	19-16S	146-50E	1984-2002	99	Nat. Tidal Ctr., BOM
335A	Рххх	56	Spring Bay	Australia	42-33S	147-56E	1985-2003	95	Nat. Tidal Ctr., BOM
336A	Рххх	61	Booby Island	Australia	10-36S	141-55E	1988-2004	91	Nat. Tidal Ctr., BOM
337A	Рххх	44	Victoria Dock	Singapore	01-16N	103-49E	1972-1981	95	Port Singapore Auth.
338A	Рххх	ХХХ	Macau	Portugal	22-10N	113-33E	1978-1985	80	Inst. Hidro. Marinha
339A	Рххх	902	Hobart	Australia	42-53S	147-20E	1985-1999	82	Nat. Tidal Ctr., BOM
340A	Рххх	ХХХ	Kaohsiung	Rep. of China	22-37N	120-17E	1980-2005	99	Central Weather Bureau
341A	Рххх	ХХХ	Keelung	Rep. of China	25-09N	121-45E	1980-2005	82	Central Weather Bureau
347A	Рххх	327	Abashiri	Japan	44-01N	144-17E	1968-2003	97	Japan Meteor. Agency
348A	Рххх	326	Hamada	Japan	34-54N	132-04E	1984-2003	95	Japan Meteor. Agency
349A	Рххх	325	Toyama	Japan	36-46N	137-13E	1967-2003	98	Japan Meteor. Agency
350A	Рххх	89	Kushiro	Japan	42-58N	144-23E	1963-2003	97	Japan Meteor. Agency
351A	Рххх	87	Ofunato	Japan	39-01N	141-45E	1965-2003	99	Japan Meteor. Agency
352A	Рххх	86	Mera	Japan	34-55N	139-50E	1965-2003	93	Japan Meteor. Agency
353A	Рххх	85	Kushimoto	Japan	33-28N	135-47E	1961-2003	97	Japan Meteor. Agency
354A	Рххх	82	Aburatsu	Japan	31-34N	131-25E	1961-2003	99	Japan Meteor. Agency
355A	Рххх	81	Naha	Japan	26-13N	127-40E	1966-2003	100	Japan Meteor. Agency
356A	Рххх	ххх	Maisaka	Japan	34-41N	137-37E	1968-2003	96	Japan Meteor. Agency
357A	Рххх	ххх	Miyakejima	Japan	34-04N	139-29E	1964-2003	98	Japan Ocean. Data Cen.
358A	Рххх	ххх	Hosojima	Japan	32-25N	131-41E	1933-1975	86	Japan Ocean. Data Cen.
359A	Рххх	911	Naze	Japan	28-23N	129-30E	1957-2003	93	Japan Ocean. Data Cen.
360A	Рххх	324	Wakkanai	Japan	45-25N	141-41E	1967-2003	98	Japan Meteor. Agency
362A	Рххх	83	Nagasaki	Japan	32-44N	129-52E	1985-2003	100	Japan Meteor. Agency
363A	Рххх	912	Nishinoomote	Japan	30-44N	130-60E	1965-2003	98	Japan Meteor. Agency
364A	Рххх	88	Hakodate	Japan	41-47N	140-44E	1964-2003	93	Japan Meteor. Agency
365A	Рххх	ххх	Ishigaki	Japan	24-20N	124-09E	1969-2003	100	Japan Meteor. Agency
370A	Рххх	73	Manila	Philippines	14-35N	120-58E	1984-2002	89	Ocean. Surveys Div.
371A	Рххх	72	Legaspi	Philippines	13-09N	123-45E	1984-2004	87	Ocean. Surveys Div.
372A	Рххх	71	Davao	Philippines	07-05N	125-38E	1984-1997	73	Ocean. Surveys Div.
373A	Рххх	70	Jolo	Philippines	06-04N	121-00E	1984-1995	86	Ocean. Surveys Div.
375A	Рххх	ХХХ	Hachinohe	Japan	40-32N	141-32E	1980-2003	100	Japan Meteor. Agency
376A	Рххх	247	Xiamen	China	24-27N	118-04E	1954-1997	100	PRC NODC
379A	Рххх	ХХХ	Cebu	Philippines	10-18N	123-55E	1998-2004	81	Ocean. Surveys Div.
380A	Рххх	ХХХ	Puerto Princesa	Philippines	09-45N	118-44E	1998-2002	83	Ocean. Surveys Div.
381A	Рххх	75	Qui Nohn	Vietnam	13-46N	109-15E	1994-2000	28	Mar. Hydromet. Center
385A	Рххх	ХХХ	Tawau	Malaysia	04-14N	117-53E	1987-2005	94	Dept. Survey/Mapping
386A	Рххх	XXX	Kota Kinabalu	Malaysia	05-59N	116-04E	1987-2005	91	Dept. Survey/Mapping
387A	Рххх	XXX	Bintulu	Malaysia	03-13N	113-04E	1992-2005	88	Dept. Survey/Mapping
388A	Рххх	ХХХ	Miri	Malaysia	04-24N	113-58E	1992-1998	91	Dept. Survey/Mapping
389A	Рххх	XXX	Sandakan	Malaysia	05-49N	118-04E	1993-2005	97	Dept. Survey/Mapping

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
391A	Рххх	165	Clipperton-A	France	10-17N	109-13W	1985-1985	47	NOAA/PMEL
391B	Рххх	165	Clipperton-B	France	10-17N	109-13W	1986-1988	100	NOAA/PMEL
393A	Рххх	ХХХ	Puerto Vallarta	Mexico	20-37N	105-15W	1973-1991	40	UNAM
394A	Рххх	ХХХ	Salina Cruz	Mexico	16-10N	095-12W	1952-1991	81	UNAM
395A	Рххх	163	Manzanillo-A	Mexico	19-03N	104-20W	1953-1982	95	UNAM
395B	Рххх	163	Manzanillo-B	Mexico	19-03N	104-20W	1992-2001	74	National Ocean Service
396A	Рххх	ХХХ	Puntarenas	Costa Rica	09-58N	084-50W	1970-1980	71	SERMAR
397A	Рххх	XXX	Guaymas	Mexico	27-56N	110-54W	1953-1986	81	UNAM
398A	Рххх	XXX	Marsden Point	New Zealand	35-50S	174-30E	1984-1985	99	Royal New Zealand Navy
399A	Рххх	148	Lord Howe-A	Australia	31-31S	159-04E	1958-1967	80	Scripps Inst. Ocean.
399B	Рххх	148	Lord Howe-B	Australia	31-31S	159-04E	1991-1994	99	Nat. Tidal Ctr., BOM
400A	Рххх	ххх	Lombrum	Papua New Guinea	02-02S	147-23E	1994-2004	91	Nat. Tidal Ctr., BOM
401A	Рххх	ххх	Apia-A	Western Samoa	13-49S	171-45W	1954-1971	88	Scripps Inst. Ocean.
401B	Рххх	ххх	Apia-B	Western Samoa	13-49S	171-45W	1993-2004	98	Nat. Tidal Ctr., BOM
402A	Рххх	ХХХ	Lautoka	Fiji	17-36S	177-26E	1992-2004	99	Nat. Tidal Ctr., BOM
403A	Рххх	ХХХ	Jackson	New Zealand	43-59S	168-37E	2004-2004	100	Nat. Tidal Ctr., BOM
410A	Рххх	ххх	Lungsurannaga	Indonesia	02-06N	117-45E	1943-1944	95	Japan Ocean. Data Cen.
411A	Рххх	ХХХ	Balikpapan	Indonesia	01-16S	116-48E	1942-1943	100	Japan Ocean. Data Cen.
414A	Рххх	ХХХ	Bajor	Indonesia	00-41S	117-25E	1943-1944	97	Japan Ocean. Data Cen.
540A	Рххх	155	Prince Rupert-A	Canada	54-19N	130-20W	1910-1918	79	MEDS
540B	Рххх	155	Prince Rupert-B	Canada	54-19N	130-20W	1963-1999	99	MEDS
542A	Рххх	156	Tofino	Canada	49-09N	125-55W	1963-1999	94	MEDS
543A	Рххх	ХХХ	Victoria,BC	Canada	48-25N	123-22W	1909-1964	98	MEDS
550A	Рххх	303	Massacre Bay, AK	USA	52-50N	173-12E	1943-1966	87	National Ocean Service
551A	Рххх	158	San Francisco,CA	USA	37-48N	122-28W	1901-2004	99	National Ocean Service
552A	Рххх	ХХХ	Kawaihae,HI	USA	20-02N	155-50W	1989-2005	89	National Ocean Service
553A	Рххх	ХХХ	Port Allen,HI	USA	21-54N	159-36W	1989-1997	97	National Ocean Service
555A	Рххх	ХХХ	Monterey,CA	USA	36-36N	121-53W	1973-2005	99	National Ocean Service
556A	Рххх	ххх	Crescent City,CA	USA	41-45N	124-11W	1933-2005	90	National Ocean Service
557A	Рххх	ХХХ	Port Orford,OR	USA	42-44N	124-30W	1996-2005	69	National Ocean Service
558A	Рххх	ХХХ	Neah Bay,WA	USA	48-22N	124-37W	1934-2005	97	National Ocean Service
559A	Рххх	154	Sitka,AK	USA	57-03N	135-21W	1950-2005	92	National Ocean Service
560A	Рххх	150	Seward-A,AK	USA	60-07N	149-26W	1925-1932	98	National Ocean Service
560B	Рххх	150	Seward-B,AK	USA	60-07N	149-26W	1944-1949	76	National Ocean Service
560C	Рххх	150	Seward-C,AK	USA	60-07N	149-26W	1967-2005	87	National Ocean Service
561A	Рххх	ххх	Seldovia,AK	USA	59-26N	151-43W	1979-2005	99	National Ocean Service
562A	Рххх	ХХХ	Valdez,AK	USA	61-08N	146-22W	1996-2004	98	National Ocean Service
564A	Рххх	ХХХ	Willapa Bay,WA	USA	46-43N	123-58W	1996-2005	100	National Ocean Service
565A	Рххх	ХХХ	Port San Luis,CA	USA	35-11N	120-46W	1983-2005	86	National Ocean Service
567A	Рххх	ХХХ	Los Angeles,CA	USA	33-43N	118-16W	1923-2001	98	National Ocean Service
569A	Рххх	159	San Diego,CA	USA	32-43N	117-10W	1906-2005	97	National Ocean Service
570A	Рххх	XXX	Yakutat,AK	USA	59-33N	139-44W	1961-2005	91	National Ocean Service
571A	Рххх	XXX	Ketchikan,AK	USA	55-20N	131-38W	1918-2005	73	National Ocean Service
572A	Рххх	XXX	Astoria,OR	USA	46-13N	123-46W	1925-2005	97	National Ocean Service
573A	Рххх	XXX	Arena Cove, CA	USA	38-55N	123-43W	1996-2005	100	National Ocean Service
574A	Рххх	100	Sand Point, AK	USA	55-20N	160-30W	1996-2001	100	National Ocean Service
575A	Рххх	ХХХ	Charleston,OR	USA	43-21N	124-19W	1978-2004	98	National Ocean Service

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
576A	Рххх	ххх	Humboldt Bay,CA	USA	40-46N	124-13W	1993-2005	100	National Ocean Service
577A	Рххх	ХХХ	Santa Barbara,CA	USA	34-25N	119-41W	1996-2005	27	National Ocean Service
578A	Рххх	ХХХ	Santa Monica, CA	USA	34-01N	118-30W	1995-2005	97	National Ocean Service
579A	Рххх	151	Prudhoe Bay, AK	USA	70-24N	148-32W	1993-2005	99	National Ocean Service
583A	Рххх	ХХХ	Cordova-A,AK	USA	60-34N	145-45W	1949-1953	94	National Ocean Service
583B	Рххх	ХХХ	Cordova-B,AK	USA	60-34N	145-45W	1964-2005	85	National Ocean Service
590A	Рххх	XXX	Matavai	French Polynesia	17-31S	149-31W	1958-1967	65	Scripps Inst. Ocean.
592A	Рххх	157	South Beach,OR	USA	44-38N	124-03W	1967-2005	99	National Ocean Service
594A	Рххх	XXX	Harvest Oil P.,CA	USA	34-28N	120-40W	1995-1999	20	National Ocean Service
595A	Рххх	74	Nome, AK	USA	64-30N	165-26W	1992-2001	68	National Ocean Service
599A	Рххх	180	Diego Ramirez	Chile	56-31S	068-43W	1991-1997	95	SHOA
626A	Рххх	309	Providenya-A	Russia	64-24N	173-12E	1977-1985	100	Inst. Hydromet. Infor.
630A	Рххх	79	Dalian-A	China	38-56N	121-40E	1975-1990	98	PRC NODC
631A	Рххх	79	Laohutan-A	China	38-52N	121-41E	1991-1997	100	PRC NODC
632A	Рххх	94	Kanmen-A	China	28-05N	121-17E	1975-1997	100	PRC NODC
633A	Рххх	283	Lusi-A	China	32-08N	121-37E	1975-1996	98	PRC NODC
635A	Рххх	78	Zhapo-A	China	21-35N	111-50E	1975-1997	100	PRC NODC
636A	Рххх	ххх	Beihai	China	21-29N	109-05E	1975-1997	100	PRC NODC
637A	Рххх	ххх	Dongfang	China	19-06N	108-37E	1975-1997	100	PRC NODC
638A	Рххх	ххх	Haikou	China	20-01N	110-17E	1976-1997	100	PRC NODC
639A	Рххх	ххх	Lianyungang	China	34-45N	119-25E	1975-1997	99	PRC NODC
641A	Рххх	ххх	Shanwei	China	22-45N	115-21E	1975-1997	98	PRC NODC
642A	Рххх	ххх	Shijiusuo	China	35-23N	119-33E	1975-1997	99	PRC NODC
650A	Рххх	ххх	Hon Dau-A	Vietnam	20-40N	106-49E	1960-1960	100	Mar. Hydromet. Center
650B	Рххх	ХХХ	Hon Dau-B	Vietnam	20-40N	106-49E	1995-1995	75	TEDIPORT
651A	Рххх	ххх	Vung Ang	Vietnam	18-05N	106-17E	1996-1997	100	TEDIPORT
652A	Рххх	ХХХ	Vung Tau	Vietnam	10-20N	107-04E	1992-1992	100	TEDIPORT
670A	Рххх	ХХХ	Champerico	Guatemala	14-18N	091-55W	1974-1975	98	Oregon State Univerity
671A	Рххх	ХХХ	La Paz	Mexico	24-10N	110-21W	1952-1983	71	UNAM
672A	Рххх	164	Puerto Angel	Mexico	15-39N	096-30W	1962-1984	74	UNAM
673A	Рххх	ХХХ	Mazatlan	Mexico	23-12N	106-25W	1953-1975	97	UNAM
674A	Рххх	XXX	San Carlos	Mexico	24-47N	112-07W	1968-1983	51	UNAM
675A	Рххх	XXX	San Jose	Guatemala	13-55N	090-50W	1955-1975	93	Oregon State Univerity
676A	Рххх	XXX	Topolobampo	Mexico	25-36N	109-03W	1956-1974	93	UNAM
677A	Рххх	ХХХ	Yavaros	Mexico	26-42N	109-31W	1970-1973	85	UNAM
678A	Рххх	ХХХ	Paita-A	Peru	05-05S	081-10W	1981-1984	100	National Ocean Service
678B	Рххх	XXX	Paita-B	Peru	05-05S	081-10W	1988-2001	90	DHNM
679A	Рххх	XXX	Corinto	Nicaragua	12-17N	087-07W	1967-1967	99	National Ocean Service
680A	Рххх	130	Macquerie IsA	Australia	54-29S	158-58E	1912-1913	97	Nat. Tidal Ctr., BOM
680B	Рххх	130	Macquerie IsB	Australia	54-29S	158-58E	1968-1972	45	Nat. Tidal Ctr., BOM
680C	Рххх	130	Macquerie IsC	Australia	54-29S	158-58E	1993-2003	76	Nat. Tidal Ctr., BOM
681A	Рххх	XXX	San Martin-A	Argentina	68-08S	067-06W	1995-1995	8	Alfred Wegener Inst.
681B	Рххх	ХХХ	San Martin-B	Argentina	68-08S	067-06W	1998-1998	5	Alfred Wegener Inst.
681C	Рххх	ХХХ	San Martin-C	Argentina	68-08S	067-06W	1998-1999	100	Alfred Wegener Inst.
682A	Рххх	ХХХ	Dallmann-A	Argentina	62-14S	058-41W	1996-1997	99	Alfred Wegener Inst.
682B	Рххх	ХХХ	Dallmann-B	Argentina	62-14S	058-41W	1997-1997	69	Alfred Wegener Inst.
682C	Рххх	ХХХ	Dallmann-C	Argentina	62-14S	058-41W	1998-1999	100	Alfred Wegener Inst.

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
683A	Рххх	ХХХ	Pisco-A	Peru	13-25S	076-08W	1985-1990	67	DHNM
683B	Рххх	ХХХ	Pisco-B	Peru	13-25S	076-08W	1991-2003	80	DHNM
684A	Рххх	178	Puerto Montt	Chile	41-29S	072-58W	1980-2002	93	SHOA
698A	Рххх	ХХХ	Tinian	N. Mariana Is.	14-58N	145-37E	1991-1997	93	USGS
699A	Рххх	44	Tanjong Pagar	Singapore	01-16N	103-51E	1988-2004	94	Port Singapore Auth.
201A	Axxx	199	St. Peter&Paul R.	Brazil	00-55N	029-21W	1982-1985	99	ORSTOM
202A	Axxx	197	Natal-A	Brazil	05-45S	035-12W	1982-1983	100	ORSTOM
202B	Axxx	197	Natal-B	Brazil	05-45S	035-12W	1983-1984	99	ORSTOM
202C	Axxx	197	Natal-C	Brazil	05-45S	035-12W	1984-1985	100	ORSTOM
203A	Axxx	198	Fer. de NorA	Brazil	03-50S	032-24W	1982-1983	100	ORSTOM
203B	Axxx	198	Fer. de NorB	Brazil	03-50S	032-24W	1984-1985	100	ORSTOM
203C	Axxx	198	Fer. de NorC	Brazil	03-50S	032-24W	1985-1986	100	LPAO/INPE
204A	Аххх	265	Trindade	Brazil	20-30S	029-19W	1983-1983	16	ORSTOM
205A	Аххх	ХХХ	Arrecife-A	Spain	28-57N	013-34W	1959-1973	97	Inst. Espanol Ocean.
205B	Аххх	ххх	Arrecife-B	Spain	28-57N	013-34W	1973-1985	69	Inst. Espanol Ocean.
205D	Аххх	ххх	Arrecife-D	Spain	28-57N	013-34W	1987-1991	90	Inst. Espanol Ocean.
206A	Axxx	ххх	S.Cruz Palma-A	Spain	28-41N	017-45W	1949-1959	99	Inst. Espanol Ocean.
206B	Axxx	ххх	S.Cruz Palma-B	Spain	28-41N	017-45W	1959-1981	93	Inst. Espanol Ocean.
206D	Аххх	ххх	S.Cruz Palma-D	Spain	28-41N	017-45W	1989-1990	93	Inst. Espanol Ocean.
207A	Axxx	249	Ceuta-A	Spain	35-54N	005-19W	1971-1974	97	Inst. Espanol Ocean.
207B	Axxx	249	Ceuta-B	Spain	35-54N	005-19W	1975-1977	97	Inst. Espanol Ocean.
207C	Аххх	249	Ceuta-C	Spain	35-54N	005-19W	1978-1980	92	Inst. Espanol Ocean.
207D	Axxx	249	Ceuta-D	Spain	35-54N	005-19W	1980-1991	89	Inst. Espanol Ocean.
208A	Axxx	XXX	Vigo	Spain	42-14N	008-44W	1943-1990	100	Inst. Espanol Ocean.
209A	Axxx	246	Cascais	Portugal	38-42N	009-25W	1959-2000	88	Inst. Hidro. Marinha
210A	Axxx	244	Flores, Azores	Portugal	39-27N	031-07W	1976-1996	75	Inst. Hidro. Marinha
211A	Axxx	245	Ponta Delgada	Portugal	37-44N	025-40W	1978-2005	67	Inst. Hidro. Marinha
212A	Axxx	XXX	Horta, Azores	Portugal	38-32N	028-37W	1984-1986	87	Inst. Hidro. Marinha
215A	Axxx	ххх	Angra Heroismo-A	Portugal	38-39N	027-14W	1957-1962	100	Inst. Hidro. Marinha
215B	Axxx	ххх	Angra Heroismo-B	Portugal	38-39N	027-14W	1976-1983	94	Inst. Hidro. Marinha
216A	Axxx	254	Porto Grande	Portugal	16-52N	024-59W	1990-1993	38	Inst. Hidro. Marinha
217A	Axxx	251	Las Palmas-A	Spain	28-06N	015-24W	1949-1956	95	Inst. Espanol Ocean.
217B	Axxx	251	Las Palmas-B	Spain	28-06N	015-24W	1971-1982	87	Inst. Espanol Ocean.
217C	Axxx	251	Las Palmas-C	Spain	28-06N	015-24W	1983-1991	73	Inst. Espanol Ocean.
217D	Axxx	251	Las Palmas-D	Spain	28-09N	015-24W	1992-2003	96	Puertos del Estado
218B	Axxx	250	Funchal-B	Portugal	32-39N	016-55W	1976-2006	72	Inst. Hidro. Marinha
220A	Axxx	314	Walvis Bay	Namibia	22-57S	014-30E	1959-1998	65	Dir. of Hydrography
221A	Axxx	268	Simon's Bay	South Africa	34-11S	018-26E	1958-1996	92	Dir. of Hydrography
222A	Axxx	XXX	Praia-A	Cape Verde	14-55N	023-30W	1984-1985	100	ORSTOM
222C	Аххх	ХХХ	Praia-C	Cape Verde	14-55N	023-31W	1995-1996	64	National Ocean Service
223A	Axxx	253	Dakar-A	Senegal	14-40N	017-26W	1982-1983	100	ORSTOM
223B	Axxx	253	Dakar-B	Senegal	14-40N	017-26W	1983-1985	100	ORSTOM
223C	Axxx	253	Dakar-C	Senegal	14-40N	017-26W	1 <u>98</u> 6-1986	44	ORSTOM
223D	Аххх	253	Dakar-D	Senegal	14-40N	017-26W	1986-1989	94	ORSTOM
223E	Аххх	253	Dakar-E	Senegal	14-41N	017-25W	1996-2003	93	UH Sea Level Center
225A	Аххх	260	Sao Tome	Sao Tome/Principe	00-01N	006-31E	1985-1988	58	ORSTOM
228A	Аххх	ХХХ	Tenerife	Spain	28-29N	016-14W	1992-2003	93	Puertos del Estado

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
229A	Axxx	ХХХ	Belem	Brazil	01-27S	048-30W	1955-1968	96	National Ocean Service
230A	Аххх	257	Abidjan-Vridi	Ivory Coast	05-15N	004-00W	1982-1988	100	ORSTOM
231A	Аххх	ххх	Takoradi	Ghana	04-53N	001-45W	1983-1986	100	ORSTOM
233A	Аххх	259	Lagos-A	Nigeria	06-25N	003-27E	1961-1969	63	POL
233C	Аххх	259	Lagos-C	Nigeria	06-25N	003-25E	1992-1996	74	NIOMR
234A	Аххх	261	Pointe Noire	Congo	04-48S	011-51E	1980-1988	77	ORSTOM
235A	Аххх	329	Palmeira,C.Verde	Portugal	16-45N	022-59W	2000-2001	68	UH Sea Level Center
236A	Аххх	ххх	Luanda	Angola	08-47S	013-14E	1972-1975	99	Inst. Hidro. Marinha
237A	Аххх	262	Lobito	Angola	12-20S	013-34E	1971-1975	88	Inst. Hidro. Marinha
238A	Аххх	ХХХ	Mocamedes	Angola	15-12S	012-09E	1971-1975	98	Inst. Hidro. Marinha
239A	Аххх	215	Siboney	Cuba	23-06N	082-28W	1990-1990	99	Inst. Cubano De Hidro.
240A	Аххх	ХХХ	Fernandina Beach	USA	30-40N	081-28W	1985-2005	91	National Ocean Service
241A	Аххх	218	Miami	USA	25-54N	080-07W	1985-1992	96	National Ocean Service
242A	Аххх	216	Key West	USA	24-33N	081-49W	1913-2005	97	National Ocean Service
244A	Аххх	276	Gibara	Cuba	21-07N	076-07W	1985-1992	100	Inst. Cubano De Hidro.
245A	Аххх	206	San Juan	USA	18-28N	066-07W	1985-2005	95	National Ocean Service
246A	Аххх	ХХХ	Magueyes Island	USA	17-58N	067-03W	1965-2004	97	National Ocean Service
247A	Аххх	328	La Guaira	Venezuela	10-37N	066-56W	1985-1994	97	Inst. Ocean. Venezuela
248A	Аххх	203	Port-of-Spain	Trinidad/Tobago	10-39N	061-31W	1984-1992	81	Trin/Tob. Hydro. Unit
249A	Аххх	ХХХ	Bridgetown-A	Barbados	13-06N	059-37W	1968-1970	98	National Ocean Service
249B	Аххх	ХХХ	Bridgetown-B	Barbados	13-06N	059-37W	1990-1991	92	Gov. of Barbados
249C	Аххх	ХХХ	Bridgetown-C	Barbados	13-06N	059-37W	1993-1996	45	Gov. of Barbados
250A	Аххх	212	Veracruz-A, Ver.	Mexico	19-12N	096-08W	1985-1995	99	UNAM
250B	Аххх	212	Veracruz-B,Ver.	Mexico	19-12N	096-08W	1999-2004	63	Secretaria de Marina
251A	Аххх	904	Guantanamo Bay-A	Cuba	19-54N	075-09W	1937-1948	81	National Ocean Service
251B	Аххх	904	Guantanamo Bay-B	Cuba	19-54N	075-09W	1995-1997	89	National Ocean Service
252A	Аххх	ХХХ	Portland,ME	USA	43-39N	070-15W	1910-2005	96	National Ocean Service
253A	Аххх	290	Newport,RI	USA	41-30N	071-20W	1930-2005	95	National Ocean Service
254A	Аххх	ХХХ	Limetree Bay	USA	17-42N	064-45W	1982-2005	90	National Ocean Service
255A	Аххх	ХХХ	Charlotte Amalie	USA	18-20N	064-55W	1978-2005	90	National Ocean Service
256A	Аххх	12	Exuma Cays	Bahamas	23-46N	076-06W	1992-1993	99	HBOI
257A	Аххх	211	Settlement PntA	Bahamas	26-43N	078-60W	1985-2002	91	National Ocean Service
257B	Аххх	211	Settlement PntB	Bahamas	26-41N	078-59W	1985-2003	78	National Ocean Service
259A	Аххх	221	Bermuda-A	United Kingdom	32-22N	064-42W	1932-1949	78	National Ocean Service
259B	Аххх	221	Bermuda-B	United Kingdom	32-22N	064-42W	1985-2005	80	National Ocean Service
260A	Аххх	219	Duck Pier,NC	USA	36-11N	075-45W	1978-2005	99	National Ocean Service
261A	Аххх	ХХХ	Charleston,SC	USA	32-47N	079-56W	1921-2005	98	National Ocean Service
262A	Аххх	ХХХ	St. Augustine, FL	USA	29-51N	081-16W	1978-2002	42	National Ocean Service
264A	Аххх	220	Atlantic City,NJ	USA	39-21N	074-25W	1911-2005	94	National Ocean Service
265A	Аххх	207	Cartagena-A	Colombia	10-23N	075-32W	1951-1993	90	IDEAM
265B	Аххх	207	Cartagena-B	Colombia	10-23N	075-32W	1993-2000	81	IDEAM
0//1		000	0.1.1.1	6	00.011	070 5514	1007 1007	0.(Panama Canal
266A	AXXX	208		Panama Osata Dias	09-21N	0/9-55W	1907-1997	96	COMMISSION
268A	AXXX	XXX	LIMON		10-00N	083-02W	1970-1981	66	SERMAR
269A	AXXX	XXX	Cochino Pequeno	Honduras	15-5/N	086-30W	1995-1996	100	INational Ocean Service
270A	AXXX	204	Le Robert	France	14-41N	060-56W	1976-1984	61	SHUM
2/1A	Аххх	XXX	Fort de France	France	14-35N	061-03W	1976-1985	37	SHOM

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
272A	Аххх	ХХХ	Pointe-a-Pitre	France	16-14N	061-32W	1991-1998	96	Meteo-France
274A	Аххх	ХХХ	Churchill	Canada	58-47N	094-12W	1961-2000	90	MEDS
275A	Аххх	222	Halifax	Canada	44-40N	063-35W	1920-2000	99	MEDS
276A	Axxx	223	St. John's-A	Canada	47-34N	052-42W	1961-1993	96	MEDS
276B	Axxx	223	St. John's-B	Canada	47-34N	052-42W	1993-2000	97	MEDS
279A	Axxx	ХХХ	Montauk	USA	41-03N	071-58W	1959-2005	89	National Ocean Service
280A	Axxx	195	Rio de Janeiro	Brazil	22-54S	043-10W	1963-2005	94	Dir. Hidro. e Navegacao
281A	Axxx	194	Cananeia	Brazil	25-01S	047-56W	1954-2004	99	Inst. Ocean. USP
283A	Axxx	ХХХ	Fortaleza-A	Brazil	03-43S	038-29W	1955-1968	95	National Ocean Service
283B	Axxx	ХХХ	Fortaleza-B	Brazil	03-43S	038-28W	1995-1998	100	LPAO/INPE
284A	Axxx	ХХХ	Termisa	Brazil	04-49S	037-03W	1993-1995	97	LPAO/INPE
285A	Axxx	ххх	Buenos Aires	Argentina	34-40S	058-30W	1905-1961	100	Ser. Hidro. Naval
287A	Axxx	ххх	Puerto Williams	Chile	54-56S	067-37W	1985-1998	88	SHOA
288A	Axxx	229	Reykjavik	Iceland	64-09N	021-56W	1984-1999	94	Iceland Hydro. Serv.
289A	Axxx	248	Gibraltar	United Kingdom	36-07N	005-21W	1961-2000	77	Hidrographic Office
290A	Axxx	305	Port Stanley-A	United Kingdom	52-42S	057-52W	1964-1974	47	POL
290B	Axxx	305	Port Stanley-B	United Kingdom	51-45S	057-56W	1992-2005	92	POL
291A	Axxx	263	Ascension	United Kingdom	07-55S	014-25W	1993-2001	89	POL
292A	Axxx	264	St. Helena	United Kingdom	15-55S	005-43W	1993-2004	82	POL
293A	Аххх	236	Lerwick	United Kingdom	60-09N	001-08W	1959-2001	99	POL
294A	Axxx	241	Newlyn	United Kingdom	50-06N	005-33W	1915-2001	99	POL
295A	Аххх	238	Stornoway	United Kingdom	58-13N	006-23W	1976-2001	80	POL
296A	Аххх	ХХХ	Sisimiut	Denmark	66-56N	053-40W	1991-1998	85	Danish Navig./Hydro.
297A	Аххх	228	Ammassalik	Denmark	65-36N	037-00W	1990-1998	78	Danish Navig./Hydro.
298A	Аххх	ХХХ	Ilulissat	Denmark	69-13N	051-06W	1992-1997	82	Danish Navig./Hydro.
299A	Аххх	ХХХ	Qaqortoq	Denmark	60-43N	046-02W	1991-1998	83	Danish Navig./Hydro.
600A	Axxx	181	Ushuaia	Argentina	54-48S	068-18W	1996-2003	79	National Ocean Service
601A	Axxx	185	Esperanza	Argentina	63-24S	056-60W	1996-1998	86	National Ocean Service
700A	Axxx	188	Faraday	United Kingdom	65-15S	064-16W	1984-2004	98	POL
701A	Axxx	ХХХ	Port Nolloth	South Africa	29-15S	016-52E	1991-1994	49	Dir. of Hydrography
702A	Axxx	ХХХ	Luderitz	South Africa	26-39S	015-09E	1991-1996	34	Dir. of Hydrography
703A	Аххх	ХХХ	Saldahna Bay	South Africa	33-01S	018-58E	1991-1996	81	Dir. of Hydrography
704A	Axxx	ХХХ	Granger Bay	South Africa	33-54S	018-25E	1991-1996	55	Dir. of Hydrography
705A	Axxx	153	L. Cornwallis I.	Canada	75-23N	096-57W	1986-1994	99	MEDS
707A	Axxx	ХХХ	Canavieiras	Brazil	15-40S	038-58W	1956-1961	95	National Ocean Service
708A	Axxx	903	Salvador	Brazil	12-58S	038-31W	1955-1964	92	National Ocean Service
709A	Axxx	195	R.Janeiro,USCGS	Brazil	22-56S	043-08W	1955-1968	70	National Ocean Service
710A	Аххх	ХХХ	Suape	Brazil	08-21S	034-57W	1982-1984	98	LPAO/INPE
711A	Аххх	ХХХ	Luis Corriea	Brazil	02-52S	041-40W	1984-1985	100	LPAO/INPE
712A	Аххх	ХХХ	Recife, USCGS	Brazil	08-03S	034-52W	1955-1968	86	National Ocean Service
714A	Аххх	193	Porto Rio Grande	Brazil	32-08S	052-06W	1981-2003	22	Dir. Hidro. e Navegacao
715A	Аххх	200	Madeira	Brazil	02-34S	044-23W	1988-2003	83	Dir. Hidro. e Navegacao
716A	Аххх	201	Santana-A	Brazil	00-03S	051-11W	1970-1972	100	Dir. Hidro. e Navegacao
716B	Аххх	201	Santana-B	Brazil	00-03S	051-11W	1975-1976	100	Dir. Hidro. e Navegacao
716C	Аххх	201	Santana-C	Brazil	00-03S	051-11W	1984-1985	100	Dir. Hidro. e Navegacao
716D	Аххх	201	Santana-D	Brazil	00-03S	051-11W	1996-1997	100	Dir. Hidro. e Navegacao
717A	Аххх	201	Santana SSN-A	Brazil	00-04S	051-10W	1994-1995	99	Dir. Hidro. e Navegacao

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
717B	Аххх	201	Santana SSN-A	Brazil	00-04S	051-10W	1999-2000	99	Dir. Hidro. e Navegacao
718A	Аххх	ХХХ	Imbituba	Brazil	28-08S	048-24W	2001-2005	77	IBGE
719A	Аххх	ХХХ	Масае	Brazil	22-14S	041-28W	2001-2005	89	IBGE
720A	Аххх	296	South Caicos	UK	21-29N	071-32W	1992-1992	76	NOAA/AOML
721A	Аххх	213	Progreso-A, Yuc.	Mexico	21-17N	089-40W	1980-1984	98	UNAM
721B	Аххх	213	Progreso-B, Yuc.	Mexico	21-17N	089-40W	1999-2004	63	Secretaria de Marina
727A	Аххх	ххх	Nassau	Bahamas	25-05N	077-21W	1904-1905	100	National Ocean Service
728A	Аххх	ххх	Point Fortin	Trinidad/Tobago	10-06N	061-25W	1987-1996	61	Trin/Tob. Hydro. Unit
730A	Аххх	189	Base Prat	Chile	62-29S	059-38W	1984-2002	96	SHOA
740A	Аххх	ХХХ	Eastport,ME	USA	44-54N	066-59W	1929-2005	93	National Ocean Service
741A	Аххх	ХХХ	Boston,MA	USA	42-21N	071-03W	1921-2005	99	National Ocean Service
742A	Аххх	ХХХ	Woods Hole,MA	USA	41-31N	070-40W	1957-2005	89	National Ocean Service
743A	Аххх	ХХХ	Nantucket,MA	USA	41-17N	070-06W	1965-2005	95	National Ocean Service
744A	Аххх	ХХХ	New London,CT	USA	41-21N	072-05W	1938-2005	95	National Ocean Service
745A	Аххх	ХХХ	New York,NY	USA	40-42N	074-01W	1958-2005	85	National Ocean Service
746A	Аххх	ХХХ	Cape May,NJ	USA	38-58N	074-58W	1965-2005	88	National Ocean Service
747A	Аххх	ХХХ	Lewes,DE	USA	38-47N	075-07W	1957-2005	96	National Ocean Service
7.00			Chesapeake		0 (FON	07/0714	1075 0004		
749A	Axxx	XXX	BBT,VA	USA	36-58N	0/6-0/W	19/5-2004	99	National Ocean Service
/50A	Аххх	XXX	Wilmington,NC	USA	34-14N	0//-5/W	1935-2005	98	National Ocean Service
752A	Аххх	289	Fort Pulaski,GA	USA	32-02N	080-54W	1935-2005	95	National Ocean Service
753A	Аххх	XXX	Mayport,FL	USA	30-24N	081-26W	1928-2000	99	National Ocean Service
754A	Аххх	XXX	Cocoa Beach,FL	USA	28-22N	080-36W	1994-1996	98	National Ocean Service
755A	Аххх	916	Virginia Key,FL	USA	25-44N	080-10W	1996-2005	99	National Ocean Service
757A	Аххх	XXX	Naples,FL	USA	26-08N	081-48W	1996-2005	95	National Ocean Service
759A	Аххх	XXX	St. Petersburg,FL	USA	27-46N	082-38W	1946-2005	96	National Ocean Service
760A	Аххх	XXX	Apalachicola,FL	USA	29-44N	084-59W	1996-2005	99	National Ocean Service
761A	Аххх	XXX	Panama City Bh, FL	USA	30-13N	085-53W	1993-2005	97	National Ocean Service
762A	Аххх	288	Pensacola,FL	USA	30-24N	087-13W	1923-2005	96	National Ocean Service
763A	Аххх	XXX	Dauphin Island AL	USA	30-15N	088-05W	1996-2005	53	National Ocean Service
764A	Аххх	XXX	South Pass,LA	USA	28-59N	089-08W	1993-1999	90	National Ocean Service
765A	Аххх	XXX	Grand Isle,LA	USA	29-16N	089-57W	1980-2005	98	National Ocean Service
766A	Аххх	XXX	Sabine Pass N, TX	USA	29-44N	093-52W	1992-2005	98	National Ocean Service
767A	Аххх	XXX	Galveston, P. Pier	USA	29-17N	094-47W	1957-2005	96	National Ocean Service
769A	Аххх	XXX	Rockport,TX	USA	28-01N	097-03W	1987-2005	99	National Ocean Service
770A	Аххх	XXX	Corpus Cristi,TX	USA	27-35N	097-13W	1992-1999	99	National Ocean Service
772A	Аххх	XXX	Port Isabel,TX	USA	26-04N	097-13W	1977-2005	96	National Ocean Service
773A	Аххх	XXX	Clearwater Bch,FL	USA	27-59N	082-50W	1996-2005	97	National Ocean Service
774A	Аххх	XXX	Port Canaveral,FL	USA	28-25N	080-36W	1994-2005	98	National Ocean Service
775A	Аххх	217	Galveston, Pier21	USA	29-19N	094-48W	1904-2001	96	National Ocean Service
779A	Аххх	XXX	C.Carmen	Mexico	18-32N	091-50W	1957-1979	57	UNAM
780A	Аххх	ХХХ	Puerto Cortes	Honduras	15-50N	087-57W	1948-1968	99	National Ocean Service
781A	Аххх	XXX	Belize	British Honduras	17-30N	088-11W	1964-1967	84	National Ocean Service
782A	Аххх	210	Port Royal	Jamaica	17-56N	076-51W	1965-1971	99	National Ocean Service
783A	Аххх	XXX	Fajardo,PR	USA	18-20N	065-38W	1921-1923	95	National Ocean Service
784A	Аххх	XXX	Puerto Castilla	Honduras	16-01N	086-02W	1955-1967	78	National Ocean Service
101A	lxxx	8	Mombasa	Kenya	04-04S	039-39E	1986-2001	78	UH Sea Level Center

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
102A	Ixxx	ХХХ	Dar Es Salaam	Tanzania	06-49S	039-17E	1986-1990	87	UH Sea Level Center
103A	Ixxx	18	Port Louis-A	Mauritius	20-09S	057-29E	1942-1947	90	Inst. Ocean. Sciences
103B	Ixxx	18	Port Louis-B	Mauritius	20-09S	057-29E	1964-1965	86	Inst. Ocean. Sciences
103C	Ixxx	18	Port Louis-C	Mauritius	20-09S	057-30E	1986-2003	99	UH Sea Level Center
104B	Ixxx	26	Diego Garcia-B	United Kingdom	07-14S	072-26E	1969-1969	41	Scripps Inst. Ocean.
104C	Ixxx	26	Diego Garcia-C	United Kingdom	07-17S	072-24E	1988-2000	80	UH Sea Level Center
105A	Ixxx	19	Rodrigues	Mauritius	19-40S	063-25E	1986-2003	96	UH Sea Level Center
106A	Ixxx	ХХХ	Praslin	Seychelles	04-21S	055-46E	1987-1989	89	UH Sea Level Center
107A	Ixxx	45	Padang	Indonesia	00-57S	100-22E	1986-1998	53	BAKOSURTANAL
108A	Ixxx	28	Male-A	Rep. of Maldives	04-11N	073-31E	1988-1989	100	Lanka Hydraulic Inst.
108B	Ixxx	28	Male-B,Hulule	Rep. of Maldives	04-11N	073-32E	1989-2003	92	UH Sea Level Center
109A	Ixxx	27	Gan	Rep. of Maldives	00-41S	073-09E	1987-2003	88	UH Sea Level Center
110A	Ixxx	ХХХ	Muscat	Oman	23-38N	058-34E	1987-1993	77	UH Sea Level Center
111A	Ixxx	273	Port Victoria-A	Seychelles	04-37S	055-28E	1977-1982	84	Inst. Ocean. Sciences
111B	Ixxx	273	Port Victoria-B	Seychelles	04-37S	055-28E	1986-1992	96	UH Sea Level Center
113A	Ixxx	ХХХ	Masirah	Oman	20-41N	058-52E	1996-2003	93	UH Sea Level Center
114A	Ixxx	4	Salalah	Oman	16-56N	054-00E	1989-2003	87	UH Sea Level Center
115A	Ixxx	33	Colombo-A	Sri Lanka	06-56N	079-51E	1953-1965	94	Nat. Aquatic Resources
115B	Ixxx	33	Colombo-B	Sri Lanka	06-57N	079-51E	1989-1992	96	UH Sea Level Center
117A	Ixxx	ХХХ	Hanimaadhoo	Rep. of Maldives	06-46N	073-10E	1991-2002	98	UH Sea Level Center
121A	Ixxx	273	Pt. La Rue	Seychelles	04-40S	055-32E	1993-2004	97	UH Sea Level Center
122A	Ixxx	ххх	Sibolga	Indonesia	01-45N	98-46E	1989-2004	89	BAKOSURTANAL
127A	Ixxx	95	Syowa	Japan	69-00S	039-36E	1987-2002	99	Japan Ocean. Data Cen.
128A	Ixxx	308	Thevenard	Australia	32-10S	133-40E	1998-2004	98	Nat. Tidal Ctr., BOM
129A	Ixxx	55	Portland, S.Aus.	Australia	38-20S	141-36E	1991-2004	99	Nat. Tidal Ctr., BOM
130A	Ixxx	278	Casey	Australia	66-17S	110-32E	1996-2003	91	Nat. Tidal Ctr., BOM
133A	Ixxx	68	Ambon	Indonesia	03-41S	128-11E	1992-2004	46	BAKOSURTANAL
134A	Ixxx	ххх	Hiron Point	Bangladesh	21-47N	089-28E	1977-2003	99	BIWTA
135A	Ixxx	ХХХ	Khal #10	Bangladesh	22-16N	091-49E	1983-1992	62	BIWTA
136A	Ixxx	ххх	Cox's Bazaar	Bangladesh	21-27N	091-50E	1983-2000	98	BIWTA
137A	Ixxx	ХХХ	Teknaf	Bangladesh	20-53N	092-18E	1983-1988	59	BIWTA
138A	Ixxx	36	Charchanga	Bangladesh	22-13N	091-03E	1980-2000	97	BIWTA
139A	Ixxx	ХХХ	Khepupara	Bangladesh	21-50N	089-50E	1987-2000	96	BIWTA
140A	Ixxx	ХХХ	Kelang	Malaysia	03-03N	101-22E	1983-2005	98	Dept. Survey/Mapping
141A	Ixxx	ХХХ	Keling	Malaysia	02-13N	102-09E	1984-2005	99	Dept. Survey/Mapping
142A	Ixxx	ххх	Langkawi	Malaysia	06-26N	099-46E	1985-2005	99	Dept. Survey/Mapping
143A	Ixxx	43	Lumut	Malaysia	04-14N	100-37E	1984-2005	97	Dept. Survey/Mapping
144A	Ixxx	ххх	Penang	Malaysia	05-25N	100-21E	1984-2005	97	Dept. Survey/Mapping
147A	Ixxx	30	Karachi	Pakistan	24-48N	066-58E	1985-1994	83	Nat. Inst. of Ocean.
148A	Ixxx	42	Ko Taphao Noi	Thailand	07-50N	098-26E	1985-2005	96	Naval Hydro. Dept.
149A	Ixxx	ххх	Lamu-A	Kenya	02-16S	040-54E	1989-1989	68	Kenya Marine Fisheries
149B	Ixxx	ХХХ	Lamu-B	Kenya	02-16S	040-54E	1995-2003	100	UH Sea Level Center
150A	Ixxx	15	Nosy Be	Madagascar	13-24S	048-18E	1987-1998	54	CNRO
151A	Ixxx	297	Zanzibar	Tanzania	06-09S	039-11E	1984-2004	99	UH Sea Level Center
155A	Ixxx	96	Dzaoudzi	Mayotte	12-47S	045-15E	1985-1995	67	SHOM
158A	Ixxx	ххх	Meneng	Indonesia	08-07S	114-23E	1987-1989	94	Center for Ocean. Res.
159A	Ixxx	ххх	Pari	Indonesia	05-51S	106-37E	1987-1990	84	Center for Ocean. Res.

JASL	TOGA	GLOSS	STATION	COUNTRY	LAT	LONG	QC-YEARS	CI	CONTRIBUTOR
160A	lxxx	292	Surabaya	Indonesia	07-13S	112-44E	1984-2004	81	BAKOSURTANAL
161A	lxxx	ХХХ	Jakarta	Indonesia	06-07S	106-51E	1984-2004	62	BAKOSURTANAL
162A	lxxx	291	Cilacap	Indonesia	07-45S	109-01E	1984-2004	40	BAKOSURTANAL
163A	lxxx	49	Benoa	Indonesia	08-45S	115-13E	1988-2004	69	BAKOSURTANAL
164A	Ixxx	17	Reunion	France	20-55S	055-18E	1982-1986	93	SHOM
165A	lxxx	ххх	Wyndham	Australia	15-27S	128-06E	1984-2005	96	Nat. Tidal Ctr., BOM
166A	Ixxx	40	Broome	Australia	18-00S	122-13E	1986-2004	83	Nat. Tidal Ctr., BOM
167A	Ixxx	52	Carnarvon	Australia	24-54S	113-39E	1984-2005	82	Nat. Tidal Ctr., BOM
168A	Ixxx	62	Darwin	Australia	12-28S	130-51E	1984-2003	97	Nat. Tidal Ctr., BOM
169A	Ixxx	51	Port Hedland	Australia	20-19S	118-34E	1984-2005	97	Nat. Tidal Ctr., BOM
170A	Ixxx	47	Christmas	Australia	10-25S	105-40E	1986-1993	52	CSIRO
171A	Ixxx	46	Cocos	Australia	12-07S	096-53E	1985-2003	94	Nat. Tidal Ctr., BOM
173A	Ixxx	277	Davis	Australia	68-27S	077-58E	1993-2003	97	Nat. Tidal Ctr., BOM
175A	lxxx	53	Fremantle	Australia	32-03S	115-44E	1984-2005	99	Nat. Tidal Ctr., BOM
176A	lxxx	54	Esperance	Australia	33-52S	121-54E	1985-2003	97	Nat. Tidal Ctr., BOM
177A	Ixxx	22	Mawson	Australia	67-36S	062-52E	1992-2003	91	Nat. Tidal Ctr., BOM
178A	Ixxx	21	Crozet	France	46-26S	051-52E	1995-2000	47	Inst. Mech. Grenoble
179A	Ixxx	24	Saint Paul	France	38-43S	077-32E	1994-2000	86	Inst. Mech. Grenoble
180A	Ixxx	23	Kerguelen	France	49-21S	070-13E	1993-1998	99	Inst. Mech. Grenoble
181A	Ixxx	13	Durban	South Africa	29-53S	031-02E	1970-2000	76	Dir. of Hydrography
182A	Ixxx	ххх	Mina Sulman	Bahrain	26-14N	050-36E	1979-2005	67	Survey Directorate
184A	Ixxx	76	Port Elizabeth	South Africa	33-58S	025-38E	1985-2000	66	Dir. of Hydrography
185A	Ixxx	ххх	Mossel Bay	South Africa	34-11S	022-08E	1991-1996	91	Dir. of Hydrography
187A	Ixxx	ххх	East London	South Africa	33-01S	027-55E	1991-1996	68	Dir. of Hydrography
188A	Ixxx	ххх	Richard's Bay	South Africa	28-48S	032-05E	1991-1996	47	Dir. of Hydrography
190A	lxxx	ХХХ	Maputo-A	Mozambique	26-10S	032-42E	1974-1974	100	Inst. Hidro. Marinha
190B	Ixxx	ххх	Maputo-B	Mozambique	25-59S	032-34E	1981-1986	49	INAHINA
191A	Ixxx	ххх	Antonio Enes	Mozambique	16-14S	039-54E	1967-1967	31	Inst. Hidro. Marinha
192A	lxxx	11	Pemba-A	Mozambique	12-58S	040-30E	1971-1973	25	Inst. Hidro. Marinha
192B	Ixxx	11	Pemba-B	Mozambique	12-58S	040-29E	1982-1984	64	INAHINA
193A	Ixxx	ххх	Nacala-A	Mozambique	14-28S	040-41E	1975-1975	18	Inst. Hidro. Marinha
193B	lxxx	ХХХ	Nacala-B	Mozambique	14-28S	040-41E	1982-1983	100	Inst. Hidro. Marinha

APPENDIX 1: References

B., Haines, Dong, D., Born, G. and Gill, S., 2003, The Harvest experiment: Monitoring Jason-1 and TOPEX/POSEIDON from a California offshore platform, Marine Geodesy, vol. 26, no. 3-4, 239-260, 2003.

CCSP, 2003. Strategic Plan for the U.S. Climate Change Science Program. Climate Change Science Program Office, Washington, D.C.

CCSP, 2009: *Coastal Sensitivity to Sea-Level Rise: A Focus on the Mid-Atlantic Region*. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [James G. Titus (Coordinating Lead Author), K. Eric Anderson, Donald R. Cahoon, Dean B. Gesch, Stephen K. Gill, Benjamin T. Gutierrez, E. Robert Thieler, and S. Jeffress Williams (Lead Authors)]. U.S. Environmental Protection Agency, Washington D.C., USA, 320 pp.

Eble, M. C., F. I. Gonzalez, D. M. Mattens and H. B. Milburn, 1989. Instrumentation, field operations, and data processing for PMEL deep-ocean bottom pressure measurements. NOAA Technical Memorandum ERL PMEL-89, 71 pp. (NTIS PB90-114018)

GCOS-92, 2004. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. (WMO/TD-No.1219)

GEOSS, 2005. Global Earth Observation System of Systems GEOSS. 10-Year Implementation Plan

International Sea Level Workshop Report, GCOS/GOOS/WCRP Ocean Observations Panel for Climate and the CLIVAR Upper Ocean Panel, April 1998, GCOS #43, GOOS #55, ICPO #16.

IOC. 1997. Global Sea Level Observing System (GLOSS) Implementation Plan 1997. Intergovernmental Oceanographic Commission, Technical Series No. 50, 91pp. & Annexes.

IPCC, 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp.

IPCC 2001a—Intergovernmental Panel on Climate Change. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Ed. J.T.Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K.Maskell, and C.A. Johnson. Cambridge, England, and New York, NY: Cambridge University Press. <a href="http://www.grida.no/climate/ipcc_tar/sel-abs/lineargovernmental-sel-abs/lineargovernme

NOAA, 2004. Program Plan for Building a Sustained Ocean Observing System for Climate. http://www.oco.noaa.gov/docs/programplan_03_04.pdf NOAA, 2006. Draft Version 1.0. Tsunami Data Management: An initial report on the management of data required to minimize the impact of tsunamis in the United States. Prepared for the National Tsunami Hazard Mitigation Program. By the NOAA National Geophysical Data Center. December 2006.

Zervas, C.E, 2001. Sea Level Variations of the United States 1854-1999. NOAA Technical Report NOS CO-OPS 36. Silver Spring, MD. National Oceanic and Atmospheric Administration, National Ocean Service.